
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1455 | https://doi.org/10.1007/s42452-020-03229-5

Research Article

Trapped flexural waves supported by a pair of identical cylinders 
in a two‑layer fluid

Sunanda Saha1 · Swaroop Nandan Bora2 

Received: 7 April 2020 / Accepted: 20 July 2020 / Published online: 30 July 2020 
© Springer Nature Switzerland AG 2020

Abstract

Existence of trapped waves in ocean shows the presence of discrete wave frequencies in the continuous spectrum. In 
the present work, we compute those trapped mode frequencies due to a pair of identical horizontal circular cylinders 
submerged in one of the layers of a two-layer fluid with a thin ice-cover at the upper layer and an infinite depth for the 
lower layer. Theory is developed for multiple cylinders but numerical computation is carried out only for a pair of cylin-
ders. Due to a thin ice-cover replacing the free surface, a fifth-order boundary condition is to be considered in the upper 
layer that makes the problem complex and challenging but more practical. Considering linear water wave theory, the 
boundary value problem is developed through modified Helmholtz equation and associated conditions. Subsequently, 
applying multipole expansion method, an infinite system of homogeneous linear equations with complex coefficients 
is obtained and solved. By fixing the geometrical parameters and density ratio, the trapped mode frequencies are com-
puted numerically by tracing the zeros of the determinant generated from the truncated system of the above mentioned 
equations. In the first instance, the cylinders are placed in the lower layer and the variation of trapped modes is examined 
by varying different parameters such as upper layer depth, submergence depth, ice-cover thickness etc. In the second 
instance, the same conditions and configurations are considered in the upper layer and existence of trapped modes is 
looked into in a similar manner. For the considered parameter values, the number of trapped modes enclosed in the 
continuous spectrum decreases corresponding to an increase in the flexural rigidity of the ice-cover. The trapped mode 
frequency decreases when either the the upper layer depth or the submergence depth increases. Further, correspond-
ing to a small change in the separation parameter, embedded trapped modes are observed to cease to exist for the 
free surface and also for a very thin ice-cover. Our findings are supported by graphs depicting various modes. Further, 
comparison of present result with an established result shows excellent agreement.
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1 Introduction

Over the last few decades, an extensive research has taken 
place with an effort to understand the constraints for two-
dimensional linear water wave problems that give rise to 
a unique solution for a prescribed homogeneous bound-
ary condition. Proving uniqueness is similar to establish-
ing that there exist only trivial solutions for homogeneous 

boundary conditions. Partial results have been obtained 
by many researchers that establish the uniqueness of 
solutions for certain configurations, e.g., Simon and Ursell 
[31], Kuznetsov et al. [13]. McIver [22] gave an example 
of non-uniqueness and showed that general uniqueness 
proof was unobtainable. She considered a pair of sources 
located on the free surface in a symmetric manner so that 
the sources were separated by half a wavelength to ensure 
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that the potential did not radiate waves to infinity. Then, a 
difference velocity potential was constructed by using an 
inverse method that satisfied a specific linear water wave 
problem. This showed the existence of a non-trivial solu-
tion, whose scalar multiple would also be a solution, since 
the considered problem was linear. This non-trivial solu-
tion is known as ‘trapped mode’ as the energy gets trapped 
in the vicinity of the structures or bodies. The investiga-
tions carried out by Kuznetsov et al. [13] and Motygin [23] 
can be considered as extensions to this two-dimensional 
result. Numerical computation was carried out by McIver 
and Evans [21] and Porter and Evans [28] to examine the 
presence of trapped modes for submerged horizontal 
cylinders. Most of these results, along with a number of 
generalizations and various other references, can be found 
in the book by Kuznetsov et al. [14] and article by Linton 
and McIver [19]. Harter et al. [4, 5] investigated the effect of 
surface tension on trapped modes and they showed that 
avoiding surface tension was not always appropriate since 
it was instrumental in changing the topological nature of 
the streamline pattern.

Linton and Evans [16] considered a numerical method 
to determine trapped modes for a bottom-mounted ver-
tical cylinder of an arbitrary shape in finite water depth. 
Using Green’s function method, the trapped modes were 
evaluated by using homogeneous system of Fredholm 
integral equations. Evans et al. [7] considered a long infi-
nite vertical cylinder symmetric about the channel centre-
plane and established the existence of trapped modes for 
the anti-symmetric motion. The work of Evans et al. [7] 
involving a single cylinder was extended by Davies and 
Parnovski [3] for two identical cylinders—each being the 
reflection of the other in the centre-plane. They derived 
the existence and non-existence of trapped modes for 
specific shape, size and position of the structure(s). Porter 
[29] was instrumental in establishing a strong numerical 
evidence in favor of the existence of two-dimensional 
trapped waves by considering a pair of symmetric hori-
zontal submerged cylinders. Recently, Tabssum et al. [35] 
considered gravity wave interaction with a porous break-
water in a two-layer ocean of varying depth and discussed 
both scattering and trapping of waves. This study has 
enhanced the understanding of scattering as well as trap-
ping of waves by a porous breakwater under wave-wave 
interaction in a two-layer ocean of continental shelf.

Study of ice-cover dynamics has gained its popular-
ity because of increase in various activities in Arctic and 
Antarctic regions. To analyze the effect of wave propaga-
tion through the nearly continuous ice-cover of those two 
regions, ice-cover is approximated as a thin elastic sheet 
partially immersed in water. As a consequence, the associ-
ated upper surface boundary condition for the problem 
does not take the form of the standard Sturm–Liouville 

type that occurs in case of plane gravity waves. Fox and 
Squire [9] considered an oblique wave at the ice-cover 
edge and derived a linearized model for the whole scat-
tering process. Chung and Fox [2] considered the inter-
action of the propagating waves with a semi-infinite ice 
sheet and determined the reflection coefficient of incident 
waves. Further, Evans and Porter [8], by using Green’s func-
tion approach, investigated the scattering of oblique inci-
dent waves by a narrow crack of an ice-sheet floating on 
the upper surface of the ocean.

Layered fluid models can be considered as a one-step 
advanced approximation of realistic stratified fluids. These 
models can be used to investigate the existence of trapped 
waves near submerged bodies. These models will give 
rise to interfaces between the layers of the fluid which 
can be considered as free surface for the internal waves. 
In order to accomplish this, linear water wave theory can 
be appropriately employed layer-wise under the assump-
tions of immiscible and gravitationally stable layers with 
constant densities. As an example, modeling of large-scale 
atmospheric and oceanic flows with shallow-water dynam-
ics and estuarine dynamics can be accomplished with the 
consideration of a simple two-layer model.

Kuznetsov [12] was the first one to prove the existence 
of trapped modes in a two-layer fluid. He considered a set-
up consisting of a submerged cylinder located in infinite 
depth lower layer with the assumption of small density 
difference between the layers. Using perturbation tech-
nique, the existence of these modes on both the free 
surface and the interface was studied. Later, the trapped 
mode frequencies were computed by Linton and Cadby 
[18] for a horizontal circular cylinder submerged in one of 
the layers. They also computed discrete trapped wave fre-
quencies in the continuous spectrum for two identical cir-
cular cylinders submerged in the lower layer. Nazarov and 
Videman [26] examined the existence of trapped waves 
for a submerged body in a two-layer fluid when it neither 
intersected the free surface nor the interface and they 
established the general sufficient condition for trapped 
water waves. Xu and Lu [37] discussed the hydroelastic 
interaction between an incident gravity wave and a thin 
elastic plate floating in a two-layer fluid of constant depth. 
They discussed the effect of density ratio of the fluids and 
the position of the interface on reflection and transmission 
of the wave. Nazarov et al. [27] investigated the trapping of 
oblique water waves by horizontal cylinders in a two-layer 
liquid for two cases depending on a small parameter. They 
provided asymptotic formulas for the surface and interfa-
cial trapped mode frequencies. Saha and Bora [33] studied 
the existence of trapped waves for a horizontal circular 
cylinder submerged in one of the layers of a two-layer fluid 
of finite depth with layer-wise constant densities when the 
fluid was covered by a rigid lid. Romero Rodriguez and 
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Zhevandrov [30] produced exact solutions for oblique 
water waves trapped by a submerged horizontal cylinder 
of small but arbitrary cross-section in a two-layer fluid. The 
solutions were developed in terms of convergent series in 
powers of the small parameter which signified the thin-
ness of the cylinder.

It has been established that two progressive waves can 
be obtained at the upper surface and the interface for a 
two-layer fluid with a thin ice-cover. The following works 
provide ample insight in this direction: (1) Bhattacharjee 
and Sahoo [32] considered flexural gravity wave problems 
in a two-layer fluid and obtained Fourier type expansion 
formulas along with the related orthogonal mode-cou-
pling relations; (2) Mohapatra and Bora [24] investigated 
the propagation of oblique waves over a small bottom 
undulation in an ice-covered two-layer fluid. The reflection 
and transmission coefficients were determined by solv-
ing the modified Helmholtz equation; (3) Mohapatra and 
Bora [25] took up the scattering problem for a submerged 
sphere placed in one of the layers of a two-layer fluid in 
finite depth covered by a thin ice-cover and computed the 
exciting forces in both horizontal and vertical directions. 
(4) Saha and Bora [34], by following assumptions of linear 
water wave theory, established the existence of trapped 
modes supported by a submerged horizontal circular cyl-
inder in a two-layer fluid of finite depth bounded above by 
a thin ice-cover and below by an impermeable horizontal 
bottom. They found that above a certain cut-off frequency 
and far from interface and ice-cover, it was possible to 
have a unique solution to the radiation problem for the 
cylinder placed in either of the layers.

In recent times, Hughes et al. [10] have provided a lot 
of information on the role of coastal trapped waves in 
mediating the influence of open ocean on the coast. This 
article lucidly describes many aspects of ocean, waves and 
continental shelf, etc.

Over the years, the study of flexural gravity wave propa-
gation in a two-layer fluid has become very important as 
illustrated by the above works and therefore, this topic has 
gained huge impetus for research to be carried out.

However, as far as the knowledge of the current authors 
is concerned, the study on trapped waves for a pair of 
identical circular cylinders placed in a two-layer fluid cov-
ered by a thin ice-sheet is not available in the literature 
till date. Though the current authors investigated various 
aspects of existence of flexural trapped waves earlier in 
[34], it was restricted to a single cylinder placed in one of 
the layers of a two-layer fluid. The objective of the present 
work is to locate the distance between these two identical 
cylinders for which trapped wave exists. The variation of 
this distance is observed by varying the ice parameters 
values, the depth of the upper layer and the submergence 
depth when the pair of cylinders is placed in the lower 

layer. The case of the cylinders being placed in the upper 
layer is also considered and the distances are located for 
which trapped wave exists. This article is arranged as fol-
lows: In Sect. 2, the problem is formulated and the trapped 
modes are determined which may occur for the arrange-
ment of any number of horizontal circular cylinders placed 
on a horizontal plane with their axes parallel to each other. 
In Sect. 3, the multipole expansion method adopted by 
Kassem [11] is used so that the singular solutions of the 
modified Helmholtz equation satisfies all the prescribed 
boundary conditions. The total velocity potential is written 
as a linear combination of all relevant multipoles. Using 
body boundary conditions on the surfaces of the cylin-
ders, an infinite system of homogeneous linear equations 
is derived. After truncating the system, the non-trivial solu-
tions indicate the trapped modes. Section 4 presents the 
results and discussions for two identical cylinders placed 
in either of the layers in addition to validation. The signifi-
cance of the present work and its contribution is briefly 
discussed in Sect. 5. At the end, all results are summarized 
in Sect 6.

2  Mathematical formulation

A two-layer inviscid, incompressible and immiscible fluid 
with irrotational motion of relatively small amplitude is 
considered in which the upper layer of depth d is covered 
by a thin uniform ice-sheet and the lower layer is of infi-
nite depth. The surface tension effect is neglected at the 
interface of the layers and each fluid layer is of infinite 
horizontal extent in both directions of the xy-plane while 
finite depth is considered along the z-direction with verti-
cal upward positive orientation by taking z = d > 0 as the 
mean position of the thin ice-sheet and z = 0 as the mean 
position of the interface (Fig. 1). With these considerations, 
velocity potentials in the lower and the upper layers for 
oblique waves can be written, respectively, in the follow-
ing form:

with �I(x, z) denoting complex-valued potential for the 
upper layer fluid (−∞ < x < ∞,0 < z < d) of density �

I
 ; 

�II(x, z) the complex-valued potential for the lower layer 
fluid (−∞ < x < ∞, −∞ < z < 0) of higher density �

II
 ; 

l the y-component of the wave number; � the angular 
frequency of the incoming wave; Re the real part of the 
bracketed quantity and i =

√

−1.
Governing equations for the velocity potentials �I and 

�II are modified Helmholtz equation as follows:

(2.1)
ΦI(x, y, z, t) = Re[�I(x, z)eilye−i�t] and

ΦII(x, y, z, t) = Re[�II(x, z)eilye−i�t],
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Let � be the ratio 𝜌
I
∕𝜌

II
(< 1) of the densities of the two 

fluids. Subsequently, the boundary conditions at the inter-
face and the ice-cover can be written as

where K = �
2∕g with g as the gravitational constant; 

D = L∕(�
I
g) with L being the flexural rigidity of the elastic 

ice-cover given by L = Eh
2

0
∕[12(1 − �

2)] ; E and � , respec-
tively, denote Young’s modulus and Poisson’s ratio for ice; 
h
0
 the very small thickness of the ice-cover; � = (�

0
∕�

I
)h

0
 

with �
0
 denoting the density of the ice. As usual, the 

boundary conditions (2.4) and (2.5), respectively, imply the 
continuity of normal velocity and pressure at the interface. 
For detailed derivation of the ice-cover boundary condi-
tion (2.6), readers are referred to the Appendix of [34].

Because of consideration of infinite depth lower layer, the 
following limiting values must be valid:

(2.2)
(

∇
2
x,z

− l
2
)

�I
= 0 for the upper fluid layer ,

(2.3)
(

∇
2
x,z

− l
2
)

�II
= 0 for the lower fluid layer .

(2.4)
��I

�z
=

��II

�z
on z = 0,

(2.5)�

(

��I

�z
− K�I

)

=

��II

�z
− K�II on z = 0,

(2.6)

[

D

(

�2

�x2
− l

2
)2

+ 1 − �K

]

��I

�z
− K�I

= 0 on z = d,

(2.7)�II , |∇�II| → 0 as z → −∞.

Under this set-up, incident waves, for an arbitrary multipli-
cative constant, can be written as

where

with u satisfying the dispersion relation

for � = (1 + �)∕(1 − �).
It may be noted that Lu and Sun [20] derived an explicit 

analytical solution of dispersion relations of the type (2.9).
By fixing the geometrical parameters and the density 

ratio, it is known, based on the work of Bhattacharjee and 
Sahoo [32], that exactly two positive real roots u

1
 and u

2
 

( u
1
< u

2
 , say) can be obtained for a specific value of K. This 

equation gets reduced to the dispersion relation derivable 
for a two-layer fluid of infinite depth bounded above by a 
free surface, i.e., for the specific case of D = � = 0.

3  Finding solutions by method of multipoles

N fixed horizontal circular cylinders of infinite length are 
placed on the plane z = f  with their generators running 
parallel to the y-axis. For the case f > 0 , the cylinders are 
located entirely in the upper fluid while for f < 0 , the cyl-
inders are entirely located in the lower fluid. The radius of 
the j-th cylinder is taken as aj and its center is positioned at 
(x, z) = (hj , f ) , j = 1, 2,… ,N . For convenience, local polar 
coordinates (rj , �j) associated with cylinder j are defined 
by (Fig. 1)

3.1  Cylinders submerged in lower layer only

3.1.1  Arbitrary single cylinder

Here we consider an arbitrary cylinder of radius aj for 
j = 1, 2,… ,N . The expressions for the symmetric and 
antisymmetric multipoles, �s

nj
(n ≥ 0) and �a

nj
(n ≥ 1) , 

respectively, are given by, as detailed in [17],

�I = exp(±ix
√

u2 − l2)

�

F+(u)e
u(z−d) + F−(u)e

−u(z−d)
�

,

�II = exp(±ix
√

u2 − l2)euz
�

F+(u)e
−ud − F−(u)e

ud

�

,

(2.8)F±(u) =

(

Du
4 + 1 − �K

)

u ± K ,

(2.9)(u − K�)F−(u) − (u − K )F+(u)e
−2ud = 0,

(3.1)xj = hj + rj sin �j and zj = f − rj cos �j .

(3.2)

�
Is

nj
(xj , zj) = (−1)n ∫

∞

0

cosh nu cos(lxj sinh u)
[

AL(v)e
vzj

+ BL(v)e
−vzj

]

du,

z

x

y
d

Interface

ρ

ρ

z = d

I

II

Thin ice−cover

x = h j

θ j

θ
p

r
pr

j

z = 0

z = f

Cylinder j

Cylinder p

a p
a

x = h   p

j

z − ∞

Fig. 1  Schematic diagram of two cylinders in the lower layer with 
the upper layer covered by an ice-cover
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(3.3)�
IIs

nj
(xj , zj) = Kn(lrj) cos n�j + (−1)n ∫

∞

0

cosh nu cos(lxj sinh u) e
vzj CL(v) du,

(3.4)�
Ia

nj
(xj , zj) = (−1)n+1 ∫

∞

0

sinh nu sin(lxj sinh u)
[

AL(v)e
vzj + BL(v)e

−vzj

]

du,

(3.5)�
IIa

nj
(xj , zj) = Kn(lrj) sin n�j + (−1)n+1 ∫

∞

0

sinh nu sin(lxj sinh u) e
vzj CL(v) du,

with �0 = 1, �
n
= 2, n ≥ 1 . From computational point of 

view, the contour integral appearing in the above coeffi-
cients can be appropriately written as the sum of the prin-
cipal value integral and the residual contribution corre-
sponding to the simple poles �

1
 and �

2
 . The principal value 

integrals can be evaluated by using the method described 
in Linton and Evans [15].

3.1.2  Multiple cylinders

We now construct a possible trapped mode potential 
as the sum over all the multipoles and also for all the 
cylinders:

for some constants A
j

n
 and B

j

n
 by searching for the possible 

non-trivial solutions which satisfy the body boundary con-
dition on the cylinders given by

For imposing this important condition, it is required to 
shift from the individual coordinates of each cylinder j 
to those of a fixed cylinder p, say, where p ≠ j (Fig. 1). By 
doing so, the following important results are obtained 
("Appendix A"):

A
s

mn

= �m(−1)
m+n ∫

∞

0

coshmu cosh nu e
vf
CL(v) du,

A
a

mn

= 2(−1)m+n ∫
∞

0

sinhmu sinh nu e
vf
CL(v) du,

(3.10)�II(r, �) =

N
∑

j=1

∞
∑

n=0

(

A
j

n
�

IIs

nj
(rj , �j) + B

j

n
�

IIa

nj
(rj , �j)

)

,

(3.11)
��II

�rj
= 0 on rj = aj , j = 1,… ,N.

where v = l cosh u ; K
n
(.) is the n-th order modified Bessel 

function of second kind and

with

The functions �s
nj

 and �a
nj

 are the singular solutions to the 

modified Helmholtz equation satisfying all the boundary 
conditions except for the body boundary condition. Since 

u
1
 and u

2
 are roots of the dispersion relation (2.9), the 

multipole potentials have two simple poles u = �
1
 and 

u = �
2
 , where

Subsequently, all the integrals appearing in Eqs. (3.2)–(3.5) 
are complex-valued.

Now we expand the multipoles in polar coordinates by 

taking X = −lrj and T = exp
[

i(�j + iu)
]

 in Eq.  (A.4) of 

"Appendix A" and then by considering the real and imagi-
nary parts, those expressions can be put into Eqs. (3.3) and 
(3.5) to obtain the following:

where I
n
(.) is the nth order modified Bessel function of first 

kind and

AL(v) =
F+(v)

F−(v)
BL(v) e

−2vd , BL(v) =
K (1 + �)F−(v)

G(v)
e
vf ,

CL(v) =
BL(v)

K (1 + �)F−(v)
[(v + K�) F+(v) e

−2vd − (v + K ) F−(v)],

(3.6)G(v) = (v − K�) F−(v) − (v − K ) F+(v) e
−2vd

.

(3.7)l cosh �1 = u1 and l cosh �2 = u2.

(3.8)�
IIs

nj
(rj , �j) = Kn(lrj) cos n�j +

∞
∑

m=0

A
s

mn
Im(lrj) cosm�j ,

(3.9)�
IIa

nj
(rj , �j) = Kn(lrj) sin n�j +

∞
∑

m=0

A
a

mn
Im(lrj) sinm�j ,
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and

It follows from (3.3), (3.5) and ()–(3.13) that for j ≠ p,

For the case j = p , the above multipoles take the form 
given by (3.8) and (3.9). We are now in a position to write

Subsequently, by imposing (3.11) and using the orthogo-
nality property of sine and cosine functions, we obtain

where p = 1, 2,… ,N;m ≥ 0 . Non-trivial solutions of this 
system allow us to determine the trapped mode fre-
quencies due to the presence of N cylinders arranged as 
described earlier. For obtaining non-trivial solutions of 
the unknown coefficients, it is required to determine the 

Kn(lrj) cos n�j =

∞
∑

m=0

(

C
jp

nm
cosm�p + D

jp

nm
sinm�p

)

Im(lrp),

Kn(lrj) sin n�j =

∞
∑

m=0

(

A
jp

nm
cosm�p + B

jp

nm
sinm�p

)

Im(lrp),

(3.12)

(−1)n ∫
∞

0

cosh nu cos(lxj sinh u)e
vzjCL(v)du

=

∞
∑

m=0

(

�
jp

nm
cosm�p + �

jp

nm
sinm�p

)

Im(lrp),

(3.13)

(−1)n+1 ∫
∞

0

sinh nu sin(lxj sinh u)e
vzjCL(v)du

=

∞
∑

m=0

(

a
jp

nm
cosm�p + b

jp

nm
sinm�p

)

Im(lrp).

�
2s

nj
(rj , �j) =

∞
∑

m=0

[

(C
jp

nm
+ �

jp

nm
) cosm�p + (D

jp

nm
+ �

jp

nm
) sinm�p

]

Im(lrp),

�
2a

nj
(rj , �j) =

∞
∑

m=0

[

(A
jp

nm
+ a

jp

nm
) cosm�p + (B

jp

nm
+ b

jp

nm
) sinm�p

]

Im(lrp).

(3.14)

�II(r, �) =

∞
∑

n=0

(

A
p

n
�

IIs

np
+ B

p

n
�

IIa

np

)

+

N
∑

j = 1

j ≠ p

∞
∑

n=1

(

A
j

n
�

IIs

nj
+ B

j

n
�

IIa

nj

)

.

(3.15)
A

p

m
+

I�
m
(lap)

K �
m
(lap)

∞
∑

n=0

[

A
p

n
A

s

mn
+

N
∑

j = 1

j ≠ p

[

Aj
n
(C

jp

nm
+ �

jp

nm
) + B

j

n
(A

jp

nm
+ a

jp

nm
)

]

]

= 0,

(3.16)
B

p

m
+

I�
m
(lap)

K �
m
(lap)

∞
∑

n=0

[

B
p

n
A

a

mn
+

N
∑

j = 1

j ≠ p

[

A
j

n
(D

jp

nm
+ �

jp

nm
) + B

j

n
(B

jp

nm
+ b

jp

nm
)

]

]

= 0,

frequencies for which zeros of the truncated determinant 
exist. Though the theoretical development derived above 
is valid for any arbitrary number of cylinders, but for exam-
ining the variation of trapped modes, it is considered con-
venient to consider a pair of identical cylinders in the next 
section. The result then can subsequently be extended to 
any number of cylinders. For the case of cylinders placed 
on z = f , f > 0 , i.e., when the cylinders are submerged in 
the upper layer, we can proceed in a similar way and again 
obtain the trapped mode frequency by solving the trun-
cated system of infinite homogeneous linear equations.

4  Numerical results and discussion 
for two identical cylinders submerged 
in either of the layers

For the case of two identical cylinders (a
1
= a

2
= a) 

placed at h
1
= −h

2
= � , we can exploit the geometry 

and consider only the oscillations symmetric about x = 0 
so that the configuration can be considered equivalent 
to a horizontal cylinder placed next to a vertical wall. 
For the case of the upper layer covered by a free sur-
face, Linton and Cadby [17] showed that the zeros of 
transmission for the oblique wave scattering problem 
occurred just below the cut-off frequency. Thereafter 
they considered the region K < l < k and demonstrated 
the existence of embedded trapped modes [18]. In this 
region, propagating waves exist with wavenumber k but 
not with wavenumber K. When a thin ice-cover plays the 
role in place of gravity waves on the upper surface, it 
was shown by Das and Mandal [6] that the maximum 
reflection occurred for frequencies just below the cut-
off frequency of the incident wave of wavenumber u

2
 . 

Hence for seeking the embedded trapped modes, the 
region u

1
< l < u

2
 must be considered.
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4.1  Cylinders submerged in the lower layer

Since our interest lies in finding an even or a symmetric 
solution about x = 0 , therefore we consider

Condition (4.1) will be satisfied if A
1

n

= A
2

n

 and B
1

n

= −B
2

n

 . Use 

of this reduces the original coupled system (3.16) simply 
to

where

It is to be noted that C
L
(v) has only one singularity on the 

real axis at �
2
 while it does not have any at �

1
 . Further, the 

path of integration is indented beneath this pole.
This system of equations can be written in matrix form 

as follows:

where

for m ≥ 0 and n ≥ 0 . In order to find non-trivial solu-
tions, it is required to find the frequencies for which the 

(4.1)
��II

�x
= 0 on x = 0.

(4.2)
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(T
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nm
A

1

n

) = 0, m ≥ 0,

P
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=
�m

2

(

Kn−m(2l�) + (−1)mKn+m(2l�)

)

cos(n +m)
�

2
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∞
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(
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(

Kn−m(2l�) + (−1)mKn+m(2l�)

)

sin(n +m)
�

2

+ �m (−1)n+m+1 ∫
∞

0

sinh nu coshmu evf sin(2l� sinh u) CL(v) du,

R
nm

= −
�m

2

(

Kn−m(2l�) + (−1)m+1Kn+m(2l�)

)

sin(n +m)
�

2

+ �m (−1)n+m ∫
∞

0
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(
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sinh nu sinhmu evf
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cos(2l� sinh u) − 1
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(4.3)�� =

(

� + � �

� � − �

)[

�

�

]

= 0,

(4.4)

� = [I�
m
(la)P

nm
∕K �

m
(la)], � = [I�

m
(la)Q

nm
∕K �

m
(la)],

� = [I�
m
(la)R

nm
∕K �

m
(la)], � = [I�

m
(la)T

nm
∕K �

m
(la)],

� = [A
1

m

], � = [B
1

m

],

determinant of matrix � vanishes. To determine such fre-
quencies, we truncate the matrix � to a 2M × 2M one and 
compute the determinant. Repetition of this process will 
yield the solution for symmetrical arrangements involving 
larger numbers of cylinders. In our following computation, 
we consider M = 8.

4.1.1  Numerical results

An oblique wave of wavenumber u
2
 propagating from the 

negative x-direction and making an angle �
inc

 to the posi-
t i v e  x - a x i s  o f  t h e  f o r m  exp[ib(x − �)]  , 

b =

√

u2
2
− l2 = u

2
cos �inc is considered to be incident on 

the cylinder centered at (�, f ) with the assumption that the 
second cylinder does not alter the interaction between the 
wave and the first cylinder. After fixing the geometrical 
parameters and density ratio, the evaluation of trapped 

mode frequencies entirely depends on two non-dimen-
sional parameters Ka and �∕a . Considering �∕a , the param-
eter Ka is varied to locate the zeros of the real part of the 
truncated determinant. Subsequently, corresponding to 
those values of Ka, the absolute values of the determinant 
are plotted. In all the figures, the fixed values considered 
are � = 0.50 and �

inc
= 0.34 . It is to be noted that the angle 

�
inc

 is such that there are no propagating waves in the 
upper layer for all Ka. Also, it is known that for a two-layer 
fluid consisting of fresh water and salt water, the ideal 
value of � is around 0.97. If this density ratio is considered, 
the same qualitative features are observed for our work 
but the effects of the interface do not come out very dis-
tinct. Therefore, we consider � = 0.5 for our problem in 
order to have a better visual observation.

When both the cylinders are in the lower layer 
only, the �∕a values are considered up to 8.0 and then 
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the variation of trapped frequencies is observed for 

�∕a ∈ [1, 8] . In Figs. 2, 3 and 4, the depth d/a of the upper 
layer is taken as 2.0 and the submergence depth f/a as 
− 1.1 . In Fig. 2, Ka is plotted against �∕a with the values 
of the ice parameters as zero which actually depicts the 
free surface problem investigated earlier by Linton and 
Cadby [18] which is also shown along with the present 
result for comparison. The depiction in the figures clearly 
shows that the results of Linton and Cadby [18] and 
the present work converge to an absolute agreement. 
Since the work in [18] is considered to be a benchmark 
result, the proper validation of the present work with it 

confirms that the work carried out is a correct one and 
hence it is reasonable to carry out subsequent investi-
gations with conviction (in Fig. 2, the continuous curves 
represent the present work while the bullets represent 
the work of Linton and Cadby [18]).

The curves in part (a) of this figure as well in all the sub-
sequent figures will be treated as modes.

In Figs. 3 and 4, the flexural rigidity D∕a4 is consid-
ered, respectively, as 0.001 and 0.01 – a distinct change 
from Fig.  2 and this implies that a thin ice-cover has 
been taken into account in place of a free surface. It is 
observed from Figs.  3 and 4, upon this replacement, 
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Fig. 2  a Values of Ka for which the real part of the determinant 
vanishes and b the absolute values of the determinant of the com-
plex matrix for two cylinders of equal radius a submerged in the 

lower layer; d∕a = 2 , f∕a = − 1.1, � = 0.5, �inc = 0.34,D∕a4 = 0 and 
�∕a = 0 . Comparison of present work with Linton and Cadby [18]
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that the first and second modes remain unchanged. 
When the value of D∕a4 is increased, frequency Ka for 
the third mode decreases. Within the specified range of 

�∕a , the number of points for which trapped waves exist 
decreases with an increase in D∕a4.

Figures 5 and 6 show the variation of these modes 
with an increase in upper layer depth d/a. In both the 
figures, the submergence depth f/a is considered to 
be − 1.1 and the ice parameters as D∕a4 = 0.001 and 

�∕a = 0.001 . In this case also, there is no variation in the 
first mode. For the second mode, the values of �∕a for 
which trapped waves exist increase corresponding to an 
increase in the depth of the upper layer. With respect to 
the third mode, as can be seen from Fig. 6a, frequency 
Ka reduces corresponding to an increment in the depth 
of the upper layer. From Fig. 6b, it is noticed that corre-
sponding to a decrease in the depth of the upper layer, 
more points �∕a occur for which trapped waves exist.

Three different submergence depths are considered 
in Figs. 7 and 8 as f∕a = − 1.05,− 1.10,− 1.15 . For both 
the figures, the upper layer depth d/a is taken as 2.0 and 
both the non-dimensionalized ice parameters are fixed 
at 0.001. With the variation of the submergence depth, 
though the first mode varies but it still does not produce 
any point on the �∕a−axis for which the absolute value 
of the determinant vanishes. As a consequence, the first 
mode does not give rise to any trapped waves within 
the specified range of �∕a . For the second mode, the 
values of �∕a , for which trapped waves exist, increase 
as the submergence depth increases, as can be seen 

by comparing all the (b) parts of Fig. 7. Figure 8a shows 
that frequency Ka for the third mode decreases as f/a 
increases. It can be observed from Fig. 8b that the val-
ues of �∕a , corresponding to which trapped waves exist, 
increase when submergence depth increases.

4.2  Cylinders submerged in the upper layer only

The pair of identical circular horizontal cylinders is placed in 
the upper fluid layer (f > 0) and hence the work can accom-
plished completely with potential �I alone. The symmetric 
and antisymmetric multipoles, based on cylinder j, j = 1, 2 , 
are given by

where
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Proceeding exactly as in the lower layer case, the follow-
ing infinite system of homogenous linear equations is 
obtained:

where
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In a similar manner, as in the previous case, by varying 
the frequency Ka and fixing the other parameters, we con-
veniently locate the real zeros of the truncated determi-
nant and then check for the existence of trapped waves 
by observing the absolute value of the determinant since 
zeros of the absolute value of the determinant correspond 
to the trapped modes.

4.2.1  Numerical results

With both the cylinders placed in the upper layer only, 
we investigate the existence of trapped waves with �∕a 
varying in the range 1.0 to 6.0. In this case, only the varia-
tion of trapped waves is examined by varying the values 
of the ice parameters. This consideration is mainly due 
to the fact that large computational expense will occur 
while computing the integrals in (4.7)–(4.10) which are 
more in number as compared to the lower layer case. Ka 
is varied up to the value 3.0 to locate the zeros of the real 
part of the truncated determinant. Here three different 
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Fig. 5  a Values of Ka for which the real part of the determinant 
vanishes and b the absolute values of the determinant of the 
complex matrix for three different values of upper layer depth d/a 
for two cylinders of equal radius a submerged in the lower layer; 
f∕a = −1.1, � = 0.5, �inc = 0.34,D∕a4 = 0.001 and �∕a = 0.001
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sets of ice parameters are considered: D∕a4 = 0, �∕a = 0 ; 

D∕a4 = 0.0001, �∕a = 0.0001 ; D∕a4 = 0.001, �∕a = 0.001 . 
The first set will correspond to the result for the upper 
layer covered by a free surface. In all the figures, d/a, the 
depth of the upper layer, is taken as 2.5 and f/a, the sub-
mergence depth, as 1.25.

Figure 9a shows that there exist two modes for which 
the real part of the determinant vanishes. Corresponding 

to those values of Ka, we present the plot of the absolute 
values of the determinant in Fig. 9b through which it can 
be observed that for both the modes, there exist values of 
�∕a for which trapped waves exist. However, if those values 
of �∕a are changed even by a small amount, the embed-
ded trapped waves will cease to exist.

Figure  10 shows that a very small value of the ice 
parameter �∕a gives rise to one extra mode - the third 
one, as compared to the case for the problem with a free 
surface. For this third mode, there exist trapped waves for 
all values of �∕a within the range considered. For Fig. 11, 
the values of the ice parameter set are considered to be 
10 times more than those considered for Fig. 10. In this 
case, the first mode remains the same but the second 

Fig. 7  a Values of Ka for which the real part of the determinant 
vanishes and b the absolute values of the determinant of the com-
plex matrix for three different values of submergence depth f/a 
for two cylinders of equal radius a submerged in the lower layer; 
d∕a = 2.0, � = 0.5, �inc = 0.34,D∕a4 = 0.001 and �∕a = 0.001
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mode does not exist while the third mode exists but its 
values get lowered as compared to those in Fig. 10. For the 
third mode, trapped waves always exist for values of �∕a 
approximately up to 3.60.

5  Discussion and relevance of present work

Modeling of large scale atmospheric and oceanic flows 
in Arctic and Antarctic regions can be accomplished by 
consideration of flexural gravity waves in a two-layer fluid. 

Existence of embedded trapped waves by a pair of identi-
cal circular cylinders submerged in either of the layers of a 
two-layer fluid is studied in this work. Therefore, it can be 
claimed that this work sets another example which shows 
that general uniqueness proof of solution for homogene-
ous boundary value problem is unobtainable even for a 
two-layer fluid.

The variations of different parameters locate the region 
where trapped modes cease to exist and hence unique 
reflection and transmission coefficient can be determined 
for that specific set of geometrical configuration of the 
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prescribed scattering problem. These trapped wave solu-
tions throw some light on a number of issues related to 
various aspects of maintenance of the coast or breakwa-
ters and for creation of tranquility zones. The interest in 
this problem is stimulated by the proposed construction of 
tube bridges in Norwegian fjords which have a manifestly 
two-layer structure [Romero Rodriguez and Zhevandrov 
[30]]. Trapped mode frequencies can be used to estimate 
the dangerous resonant frequencies that may appear in 
the scattering problem in the vicinity of the submerged 
structures. Trapped waves have the potential to lead to 
sharp gradients in coastal sea level which help in improv-
ing the study of ocean currents in North Pacific subtropical 
gyre and Weddell sea near Antarctica [Hughes et al. [10]].

6  Conclusion

The present work is an investigation of trapped water 
waves due to a pair of horizontal circular cylinders sub-
merged in one of the layers of a two-layer fluid in an 
ocean, with a finite depth upper layer which is bounded 
above by a thin ice-cover approximated as a thin elas-
tic plate and an infinite depth lower layer. For such a 
configuration, for any given frequency, waves propa-
gate at two different wavenumbers - the wave with the 
smaller wave number is connected to an ice-surface dis-
turbance and the other one to the motion at the inter-
face. Since embedded trapped waves confined only to 
the area between the cylinders is considered, therefore 
propagating waves exist only near the interface but not 
near the ice-cover. When both the cylinders are placed 
entirely in the lower layer, we present numerically the 
existence of trapped modes above the cut-off frequency 
for oblique waves incident on such a geometry. For the 
considered parameter values, the number of trapped 
modes enclosed in the continuous spectrum decreases 
corresponding to an increase in the flexural rigidity of 
the ice-cover. The trapped mode frequency decreases 
when either the the upper layer depth or the submer-
gence depth increases. When the cylinders are placed 
entirely in the upper layer, both cases of the layer cov-
ered by a free surface or by a thin ice-cover are con-
sidered. Also corresponding to a small change in the 
separation parameter, embedded trapped modes cease 
to exist for the free surface and also for a very thin ice-
cover. The present work tries to establish the existence 
of trapped modes based on numerical evidence only, i.e., 
the values of those frequencies for which the truncated 
determinant vanishes are computed. The consideration 
of two cylinders in either layer in an ice-covered two-
layer fluid presents a more challenging problem than 

the one corresponding to a single cylinder. The present 
problem of a pair of cylinders can be easily repeated for 
a system of larger number of cylinders for symmetrical 
arrangements, say arrays of cylinders. Comparison of 
present result with an established result of Linton and 
Cadby [18] shows excellent agreement.

Our investigation is expected to encourage the inves-
tigation of various such ocean engineering problems in 
addition to some related areas of mathematical phys-
ics in which higher-order boundary conditions arise in a 
characteristic manner.
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Appendix: Coordinates shifts

We are required to transform Kn(lrj) cos n�j , j = 1, 2,… ,N , 
where the coordinates (rj , �j) associated with the j-th cyl-
inder are measured from (hj , f ) to the coordinates (rp, �p) 
associated with the p-th cylinder placed at (hp, f ) and vice 
versa. We use Graf’s Addition Theorem for modified Bessel 
functions ([36]) given by

where R, � and Z are the sides of the triangle given in 
Fig. 12. In the present case, the triangle has sides rj , rp and 
|hj − hp| and so upon the following substitutions

and considering the cases hj > hp , hp > hj separately, we 
have

(A.1)

K
n
(�) cos n� =

∞
∑

m=−∞

K
n+m(R)Im(Z) cosm�,

K
n
(�) sin n� =

∞
∑

m=−∞

K
n+m(R)Im(Z) sinm�,

(A.2)

� = lrj ; � =

�

2
− �j ; Z = lrk ;

� = �k −
3�

2
; R = l|hj − hp|,

Fig. 12  Coordinate shift for 
Graf’s addition theorem

R

Zβ
φψ
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where

Using the relations xj = hp − hj + xk and zj = zp in the inte-
gral in (3.3), we obtain

The well known generating function of modified Bessel 
functions is utilized [36]:

where �
0
= 1 ,  �

m
= 2,m ≥ 1 .  Substituting X = −lrp , 

T = exp[i(�p + iu)] in it and equating real and imaginary 
parts, the following results are obtained:

Using the above relations in (A.3), we obtain

with

Similarly, for the integral in (3.5), we get

Kn(lrj) cos n�j =

∞
∑

m=0

(

C
jp

nm
cosm�p + D

jp

nm
sinm�p

)

Im(lrp),

Kn(lrj) sin n�j =

∞
∑

m=0

(

A
jp

nm
cosm�p + B

jp

nm
sinm�p

)

Im(lrp),

A
jp

nm
=

�m

2

(
(−1)mKn+m(l|hj − hp|) + Kn−m(l|hj − hp|)

)
sin(n +m)

�

2
,

B
jp

nm
=

�m

2

(
(−1)m+1Kn+m(l|hj − hp|) + Kn−m(l|hj − hp|)

)
cos(n +m)

�

2
,

C
jp

nm
=

�m

2

(
(−1)mKn+m(l|hj − hp|) + Kn−m(l|hj − hp|)

)
cos(n +m)

�

2
,

D
jp

nm
= −

�m

2

(
(−1)m+1Kn+m(l|hj − hp|) + Kn−m(l|hj − hp|)

)
sin(n +m)

�

2
.

(A.3)

(−1)n ∫
∞

0

cosh nu cos(lxj sinh u) e
vzj CL(v) du

= (−1)n ∫
∞

0

cosh nu cos(l|hp − hj | sinh u) cos(lxp sinh u) e
vzp CL(v) du

+ (−1)n+1 ∫
∞

0

cosh nu sin(l|hp − hj | sinh u) × sin(lxp sinh u) e
vzp CL(v) du.

(A.4)exp
[

1

2
X (T + T

−1)

]

=

∞
∑

m=0

1

2
�
m

(

T
m + T

−m
)

I
m
(X ),

evzp cos(lxp sinh u) = evf
∞
∑

m=0

(−1)m �m coshmu Im(lrp) cosm�p,

evzp sin(lxp sinh u) = evf
∞
∑

m=0

(−1)m+1
�m sinhmu Im(lrp) sinm�p.

(−1)n ∫
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vf CL(v) du,

�
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= (−1)m+n�m ∫
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cosh nu sinhmu sin(l|hp − hj | sinh u)e
vf CL(v) du.

with
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