
Abstract
Objectives: This paper presents the review of Tunnel FET (TFET) to overcome the major challenges faced by the 
 conventional MOSFET. Analysis: Various device structures and characteristics of TFET along with different material and 
doping to improve efficiency are discussed in detail. In recent years, TFET seems to be an attractive device for analog/
mixed-signal applications due to their advantages such as high ON current (ION), low leakage current (IOFF), reduced values 
of threshold voltage (VT) and low Subthreshold Swing (SS).
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1. Introduction
As MOSFET’s size scales down, the low power dissipation 
in the circuit is maintained by reduced supply voltage. The 
electrical parameters such as Subthreshold Swing (SS) 
and threshold voltage (Vt) should be very less. But the SS 
is limited to 60 mV/decade in MOSFETs1. To overcome 
this, several novel devices with various transport mecha-
nism have been reported. Tunnel Field Effect Transistor 
(TFET), which is one such novel device, employs the car-
rier transport mechanism of Band-to-Band Tunneling 
(BTBT). 

TFET is a gated p-i-n diode which is turned on 
by applying necessary gate bias. At sufficient bias the 
BTBT takes place, allowing the electrons to tunnel 
from valance band of p-region to conduction band of 
intrinsic region, resulting in flow of current across the 
device. TFETs are widely preferred due to their least 
SS, less leakage current (IOFF) and low threshold voltage 
(VT)2–4. 

In this paper, a review on TFETs is presented. Section 
2 deals with the characteristics of TFET. Various design 
consideration and optimization of the TFETs are analyzed 
in Section 3. The conclusion is given in Section 4.

2. Characteristics of TFET
Figures 1 (a) and (b) illustrate the general schematic of 
TFET and its energy band diagram. TFET comprises p+ 
source, intrinsic channel and n+ drain. During the OFF-
state (Vg = 0 V), the width of the tunneling barrier is large 
enough to provide low IOFF values. In the presence of 
gate voltage (Vg = 1 V), the band bending in the intrinsic 
region causes the barrier width to get reduced, allowing 
the electrons to tunnel from source to channel. 

2.1 Subthreshold Swing (SS)
Subthreshold Swing (SS) is one of the most important 
characteristics of TFET. It is defined as the change in gate 
voltage required for one order of magnitude change in 
drain current. The SS of MOSFET is limited and cannot 
be reduced below 60 mV/decade at room temperature. 
The Subthreshold Swing for MOSFET and Tunnel FET 
(TFET) at room temperature is defined as follows5.
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Figure 1. (a) Schematic view (b) Energy band diagram.

Where k is Boltzmann constant, T is temperature (300 K), 
q is electron charge, Vgs is applied gate-to-source voltage, 
Const is determined by the device dimensions. The SS 
value became smaller as gate oxide thickness, Silicon on 
Insulator (SOI) layer thickness are decreased in TFET6. 
The effective subthreshold slope (reciprocal value of SS) 
has been reduced by lowering the channel length and 
using high k materials as gate dielectrics, which is shown 
in Figure 27. The TFET device is made without junctions 
called Junctionless Field Effect Transistor (JLTFET)8,9 to 
achieve steep slope. A vertical Si based nanowire TFET 
with source side dopant segregated silicidation has been 
fabricated with low SS of 30 mV/dec10.

2.2 Improved ION/IOFF Ratio
Due to reduced leakage current (IOFF), TFET is found to be 
more suitable for low power applications. Furthermore, 
Krishna K. Bhuwalka et al. reported that drive current 
(ION) and very low IOFF in TFET can be achieved with 
gate work function engineering11. Id – Vg characteristic 
of Silicon (Si) based SINGLE GATE (SG) SOI TFET is 
shown in Figure 3. It can be inferred that drain current 
(Id) increases exponentially with increasing gate voltage 
at constant drain bias 12 and this is due to high electron 
tunneling at the source side.

For TFET, ION is directly proportional to the tunneling 
probability T(E) and it is given by:
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where m∗ is the carrier effective mass, Eg is the band gap, 
e is the electron charge, ΔΦ is the potential difference 
between source valence band and channel conduction 
band, and tox, tSi are the oxide and silicon film thickness 
and εox, εSi are dielectric constants of oxide and silicon, 
respectively. From the above equation, it is evident that 

Figure 2. Effective subthreshold slope for different Lch and 
high k dielectrics7.

Figure 3. Id – Vg characteristics of Si based single- gate 
SOI–TFET12.

reducing tox, increasing εox, and reducing Eg, will enhance 
the device performance 13. Sweta Chander et al. reported 
that Silicon Germanium on Insulator (SGOI) TFET of 
gate length (Lg) 30 nm offers more ION/IOFF ratio14 up to 
3.4 × 109. Higher ION/IOFF ratio is also obtained for dual 
material gate TFET and p-n-i-n TFET15,16.
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2.3 Threshold Voltage (VT)
Threshold voltage (VT) plays an important role in deter-
mining the device performance. Many approaches were 
developed for the enhancement of VT. Gate All Around 
(GAA) vertical n-type and p-type TFETs offers reduced 
VT in the range of 0.13–0.22 V2. A vertical TFET with 
SiGe delta doped layer offers less threshold voltage with 
increasing mole fraction (x). The VT variation with 
respect to VDS is shown in Figure 4. VT is extracted by 
using constant current method. It can be observed from 
the graph that, VT is dependent on VDS in the initial state 
later exhibiting the saturation behavior17.

3.  Design Consideration and 
Optimization of TFETs

3.1 Single Gate and Double Gate TFETs
Single gate TFETs possesses low IOFF and also low ION

18–

20. Increasing the number of gates in the device offers 
better electrostatic control over the channel. In order 
to improve ION, second gate is created at the bottom of 
single gate TFETs21–25. Figure 5 shows the structure of 
nTFET. Double Gate (DG) TFETs Strained DG TFET 

Figure 4. VT as a function of VDS
17.

Figure 5. Simulated structure of Tunnel FETs (a) Single-
gate (b) Double gate5.

reported in26 has been designed with strained silicon with 
fractional  germanium content for circuit applications. 
The double gate increases the performance by offering 
improved transconductance and reduced threshold volt-
age27. Comparing to conventional MOSFET, DG TFETs 
offers very low threshold voltage roll-off28, higher ION 
and decreased IOFF by careful selection of a gate dielec-
tric5. Vertical architecture provides an added advantage 
in terms of reduced Short Channel Effects (SCE)29. For 
circuit application, the supply voltage was limited to 0.5 V 
when using Ge based TFET30.

Compared to 7T TFET SRAM design, 6T TFET SRAM 
design offers better noise margin and improved perfor-
mance. Figures 6(a) and (b) represents the DG TFET 
structure and the 6T SRAM design. The graphical repre-
sentation shown in Figure 6(c) denotes the standby leakage 
comparison between TFET and CMOS SRAM design. 
TFET based SRAM design have reduced leakage over 
CMOS based SRAM31. Since the performance of TFET 
devices are mainly focused for digital applications, the ana-
log performances are investigated by introducing gate stack 
architecture shown in Figure 732. TFET devices are now 
becoming a promising candidate for analog applications33–36.

3.2 III-V Material based TFET
Enhancement in ION and SS of DG TFET can be achieved 
by introducing Dual Material Gate (DMG) in the device by 
using different work functions to the gates37. The device is 
also found to be immune to DIBL effects. Figure 8 repre-
sents the top and bottom gates comprising of two different 
work functions. The gate nearer to source is called as tunnel 
gate while the gate nearer to the drain is called as auxiliary 
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Figure 6. (a) DG TFET structure (b) 6T SRAM design 
based DG TFET (c) Standby leakage comparison of DG 
TFET over CMOS SRAM design31.

Figure 7. (a) Gate stack DG TFET structure (b) 
Transconductance gm variation with Vgs of GS-DG TFET 
over DG TFET32.

Figure 8. Structure of dual material DG TFET41.

gate. Due to indirect bandgap material and lower tunnel-
ing probability, Silicon (Si) based DG TFETs38 suffers from 
lesser ION, which can be further improved by using lower 
band gap material like Silicon-Germanium (SiGe)39-42. 
Si1-xGex TFET exhibited the better performance with low 
SS by optimizing the mole fraction (x)43. Small band gap 
materials were used to improve the carrier tunneling by 
reducing the width of the tunneling barrier44. Additionally, 
a smaller bandgap material, In GaAs is used at the source 
of Si-based p-TFET to boost the ON current45.

3.3 Asymmetric Gate Oxide
Rakhi Narang et al. had reported that the performance 
enhancement of an asymmetric gate oxide DG TFET is 
observed with a high-k dielectric at the source and low-k 

Figure 9. Structure of an asymmetric gate oxide DG 
TFET46.

Figure 10. Gate on drain overlap structure of DG TFET48.

material at the drain. Further to control the high gate 
drain capacitance problem, low oxide material (SiO2) is 
replaced by air (k = 1) at the drain side of the device and 
thereby resulting in improved cut off frequency. Further 
the energy dissipation per cycle and the reduced propaga-
tion delay obtained from circuit level performance results 
in better switching characteristics and thereby making 
the asymmetric gate oxide DG TFET more suitable for 
low power digital applications. Figure 9 shows the struc-
ture of an asymmetric gate oxide DG TFET46.
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3.4 Gate on Drain Overlap
The ambipolar conduction is suppressed by incorporat-
ing TFET with gate-drain overlap even at higher drain 
doping levels (1×1019 cm−3)47. Band bending of the device 
remains unchanged after 1×1019 cm−3 doping due to gate 
potential in the overlapped region48. Figure 10 shows the 
gate on drain overlap structure of DG TFET.

4. Conclusion
In this paper, the benefits of TFET over the conventional 
MOSFET are discussed in detail. Various device structures 
of TFET dealing with the performance enhancement such 
as higher ION, lower values of IOFF, VT and SS are inves-
tigated thoroughly. Hence TFETs are considered to be 
superior to that of MOSFETs and future work involves the 
designing of DG TFET with different materials to make it 
more suitable for RF/ analog or mixed signal circuit appli-
cations.
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