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Abstract: In this paper, we introduce a modified implicit relation and obtain some new fixed point

results for σ-implicit type contractive conditions in relational metric-like spaces. We present some

nontrivial examples to illustrative facts and compare our results with the related work. We also discuss

sufficient conditions for the existence of a unique positive definite solution of the non-linear matrix

equation U = D +
∑m

i=1A
∗
iG(U)Ai, where D is an n × n Hermitian positive definite matrix, A1, A2,

. . . , Am are n × n matrices, and G is a non-linear self-mapping of the set of all Hermitian matrices

which is continuous in the trace norm. Finally, we discuss a couple of examples, convergence and

error analysis, average CPU time analysis and visualization of solution in surface plot.
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1. Introduction

In recent years, a number of mathematicians have obtained fixed point results for contraction type

mappings in metric spaces equipped with a partial order. Some early results in this direction were

established by Turinici in [26, 27]. This type of results have been reinvestigated by Ran and

Reurings [24], and Nieto and Ródrı́guez-López [21, 22]. The results of Turinici [26, 27] were further

extended and refined in [21, 22].
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Recently, Samet and Turinici [25] established fixed point theorem for nonlinear contraction under

symmetric closure of an arbitrary relation. Most recently, Ahmadullah et al. [1, 3] and Alam and

Imdad [5] attempted a relation-theoretic analogue of the Banach contraction principle which in turn

unifies some well-known relevant order-theoretic fixed point theorems.

A number of generalizations of metric spaces have been obtained by many authors in various ways.

In [19], Matthews introduced the notion of a partial metric space (PMS, in short) and presented an

analogue of the classical Banach contraction theorem in these spaces with applications denotational

semantics of dataflow networks. In [12], Hitzler introduced dislocated metric spaces (also known

as “metric-like space” by Amini-Harandi [9]) as a new generalization of the PMS. Amini-Harandi

defined σ completeness of metric-like spaces. For more detail in these two spaces, one can refer

[8, 10, 11, 13, 15, 20] references cited therein.

On other hand, Ahmadullah and Imdad [2] discussed the fixed point results for F-contraction

mappings on relational metric spaces and applied to get solution of a nonlinear matrix equation.

Further, this work is extended by Altun et al. [7] to relational PMSs and established some fixed point

and property (P) results with some examples. Ahmadullah et al. [4] proved fixed point results on

relational metric-like spaces.

In the present paper, we introduce a modified implicit relation and obtain some new fixed point

results in relational metric-like spaces. Our results extend and generalize a number of fixed point

theorems from the literature including certain results of Ahmadullah et al. [1, 4, 5]. This paper is

organized in 7 sections. Particularly, in Section 3, we introduce and discuss a modified implicit relation.

In Section 4, we introduce the notion of σ-implicit type self-mapping on relational set and prove

a unified fixed point result, a periodic point result and discuss several special cases. In Section 5,

we discuss some useful examples to illustrate our results. In Section 6, a sufficient condition for the

existence of a unique positive definite solution of a non-linear matrix equation is discussed. In Sections

7, we visualize this procedure through convergence analysis using three different initializations and a

solution graph.

2. Preliminaries

Throughout this article, the notations Z, N, R, R+ have their usual meanings, and N∗ = N ∪ {0}.

Definition 2.1. [19] For a set E , ∅, define a partial metric p : E×E → R+ such that for all ν, ϑ, µ ∈ E:

(p1) ν = ϑ⇐⇒ p(ν, ν) = p(ν, ϑ) = p(ϑ, ϑ),

(p2) p(ν, ν) ≤ p(ν, ϑ),

(p3) p(ν, ϑ) = p(ϑ, ν),

(p4) p(ν, ϑ) ≤ p(ν, µ) + p(µ, ϑ) − p(µ, ν).

In this case, the pair (E, p) is a PMS.

Definition 2.2. [9] For a set E , ∅, define a metric-like σ : E × E → R+ such that for all ν, ϑ, µ ∈ E

(σ1) σ(ν, ϑ) = 0⇒ ν = ϑ,

(σ2) σ(ν, ϑ) = σ(ϑ, ν),

(σ3) σ(ν, ϑ) ≤ σ(ν, µ) + σ(µ, ϑ).
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In this case, the pair (E, σ) is a metric-like space (MLS, in short).

Remark 2.3. [4] In is noted that every metric spaces is PMS and every PMS is MLS but the converse

is not necessarily true.

Definition 2.4. [9] Let (E, σ) be a MLS and {νn} a sequence in E. Then we say that

• the sequence {νn} converges to a point x in E if and only if lim
n→∞
σ(νn, ν) = σ(ν, ν),

• the sequence {νn} is Cauchy in E if and only if limn,m→∞ σ(νn, νm) is exist and finite,

• the MLS (E, σ) is complete if every Cauchy sequence {νn} in E converges to a point ν in E with

respect to τσ (topology generated by σ) such that

lim
n,m→∞

σ(νn, νm) = σ(ν, ν) = lim
n→∞
σ(νn, ν).

We call (E,R) a relational set if

(i) E , ∅ is a set and

(ii) R is a binary relation on E.

In addition, if (E, σ) is a MLS, we call (E, σ,R) a relational metric-like space (RMLS, for short).

In the following, we present some elementary results on relational sets, see [4, 5, 16–18, 25]).

Definition 2.5. Let (E,R) be a relational set, (E, σ,R) be an RMLS, and let P be a self-mapping on E.

(1) ν ∈ E is R-related to ϑ ∈ E if and only if (ν, ϑ) ∈ R.

(2) The inverse of R is denoted by R−1 and is defined as R−1 = {(ν, ϑ) ∈ E × E : (ϑ, ν) ∈ R} and

Rs = R ∪ R−1.

(3) The set (E,R) is said to be comparable if for all ν, ϑ ∈ E, [ν, ϑ] ∈ R, where [ν, ϑ] ∈ R means that

either (ϑ, ν) ∈ R or (ν, ϑ) ∈ R.

(4) A sequence (νn) in E is said to be R-preserving if (νn, νn+1) ∈ R, ∀n ∈ N∗.

(5) R is said to be P-closed if (ν, ϑ) ∈ R ⇒ (Pν,Pϑ) ∈ R. It is said to be weakly P-closed if

(ν, ϑ) ∈ R⇒ [Pν,Pϑ] ∈ R.

(6) (E, σ,R) is said to be R-complete if every R-preserving Cauchy sequence {νn} in E, there is some

x ∈ E such that

lim
n,m→∞

σ(νn, νm) = σ(ν, ν) = lim
n→∞
σ(νn, ν).

Recall that the limit of a convergent sequence in metric-like spaces is not necessarily unique [9].

(7) P is said to be R-sequentially-continuous at ν if for any R-preserving sequence (νn) →τσ ν, we

get P(νn) →τσ P(ν) as n → ∞. Moreover, P is said to be R-sequentially-continuous if it is

R-sequentially-continuous at every point of E.

(8) R is said to be σ-self-closed if for every R-preserving sequence with νn →
τσ ν, there is a

subsequence (νnk
) of (νn), such that [νnk

, ν] ∈ R, for all k ∈ N∗.

(9) A subset Z of E is called R-directed if for each ν, ϑ ∈ Z, there exists µ ∈ E such that (ν, µ) ∈ R

and (ϑ, µ) ∈ R. It is called (P,R)-directed if for each ν, ϑ ∈ Z, there exists µ ∈ E such that

(ν,Pµ) ∈ R and (ϑ,Pµ) ∈ R.

(10) For ν, ϑ ∈ E, a path of length k (where k is a natural number) in R from ν to ϑ is a finite sequence

{µ0, µ1, µ2, . . . , µk} ⊂ E satisfying the following conditions:
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(i) z0 = ν and µk = ϑ,

(ii) (µi, µi+1) ∈ R for each i (0 ≤ i ≤ k − 1),

then this finite sequence is called a path of length k joining ν to ϑ in R.

(11) If for a pair of ν, ϑ ∈ E, there is a finite sequence {µ0, µ1, µ2, . . . , µk} ⊂ E satisfying the following

conditions:

(i) Pµ0 = ν and Pµk = ϑ,

(ii) (Pµi, Pµi+1) ∈ R for each i (0 ≤ i ≤ k − 1),

then this finite sequence is called a P-path of length k joining ν to ϑ in R.

Notice that a path of length k involves k+1 elements of E, although they are not necessarily distinct.

Remark 2.6. [4] Every complete MLS is an R-complete but the converse is not true. For the the

universal relation R, the notion of R-completeness coincides with completeness, and R-continuity

coincides with continuity. On an RMLS, every continuous mapping isR-continuous but not conversely.

We fix the following notation for a relational space (E,R), a self-mapping T on E and an R-directed

subset D of E:

(i) f ix(T ) : the set of all fixed points of T ,

(ii) X(T ,R) : {ν ∈ E : (ν,T ν) ∈ R},

(iii) P(ν, ϑ,R) : the class of all paths in R from ν to ϑ in R, where ν, ϑ ∈ E.

3. Implicit relations

In this section we introduce a modified version of implicit relation and examples discussed in [6,23].

Denote Φ := {ϕ : R+ → R+ } satisfying the following conditions:

(i) ϕ is increasing and ϕ(0) = 0;

(ii)
∑∞

n=1 ϕ
n(ζ) < ∞, for ζ > 0; where ϕn is the n-th iterate.

It should be noted that ϕ(ζ) < ζ and the family Φ , ∅.

Example 3.1. Consider (E, σ) with σ(ν, ϑ) = max{ν, ϑ}, where E = [0, 1]. Define the mapping ϕ(ζ) =
λζ

5
, where 0 < λ < 1. Then we have ϕn(ζ) ≤

λnζ

5n . Therefore,
∑∞

n=1 ϕ
n(ζ) =

∑∞
n=1

λnζ

5n < ∞ and hence

Φ , ∅.

Let Υ := {G : R5
+ → R is continuous function } satisfying the following conditions:

(G1) G is nonincreasing in fifth variable;

(G2) there exists ϕ ∈ Φ such that for all ζ, ξ, µ ≥ 0,

G(ζ, ξ, ξ, ζ, ζ + ξ, µ) ≤ 0, implies that ζ ≤ ϕ(ξ);

(G3) G(ζ, ζ, 0, 0, ζ, ζ) > 0 for ζ > 0.

Let Υ′ := {G ∈ Υ} and following additional conditions hold:

(G4) G(ζ, 0, 0, ζ, ζ, 0) > 0, for all ζ > 0.
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Obviously Υ is more general than Υ′.

Example 3.2. Let G(r1, r2, r3, r4, r5, r6) = r1 − a max{r2, r3, r4} + b(r5 + r6), 0 ≤ a < 1 and b > 0.

(G2) Then for ζ, ξ, µ ≥ 0, we have

G(ζ, ξ, ξ, ζ, ζ + ξ, µ) = ζ − a max{ξ, ξ, ζ} + b(ζ + ξ + µ).

If ξ ≤ ζ, then (1 − a)ζ > 0 and so, G(ζ, ξ, ξ, ζ, ζ + ξ, µ) > 0. Therefore

G(ζ, ξ, ξ, ζ, ζ + ξ, µ) ≤ 0 =⇒ ζ ≤ ϕ(ξ) where ϕ(ξ) = hξ and h < 1.

(G3) G(ζ, ζ, 0, 0, ζ, ζ) = (1 − a)ζ + 2bζ > 0 for all ζ > 0.

(G4) G(ζ, 0, 0, ζ, ζ, 0) = (1 − a + b)ζ > 0 for all ζ > 0.

Example 3.3. Let G(r1, r2, r3, r4, r5, r6) = r2
1
− ar2

2
− b

r2
3
+r2

4

r5+r6+1
, 0 < a, b < 1 and a + 2b < 1.

(G2) Then for ζ, ξ, µ ≥ 0, we have

G(ζ, ξ, ξ, ζ, ζ + ξ, µ) = ζ2 − aξ2 − b
ζ2 + ξ2

1 + ζ + ξ + µ
.

It is evident that G(ζ, ξ, ξ, ζ, ζ + ξ, µ) ≤ 0 =⇒ ζ ≤ ϕ(ξ) where ϕ(ξ) = hξ and h =

√

a+b
1−b
< 1.

(G3) For all ζ > 0, G(ζ, ζ, 0, 0, ζ, ζ) = (1 − a)ζ2 > 0.

(G4) G(ζ, 0, 0, ζ, ζ, 0) =
(1−b)ζ2+ζ3

1+ζ
> 0, for all ζ > 0.

Example 3.4. Let G(r1, r2, r3, r4, r5, r6) = r2
1
− ar2

2
− b

r2
3
+r2

4

r2
5
+r2

6
+1
, 0 < a, b < 1 and a + 2b < 1.

Proof is similar to Example 3.3.

Example 3.5. Let G(r1, r2, r3, r4, r5, r6) = r1 − ar2 − br3 − c
r4r5

r5+r6+1
, 0 < a, b, c < 1 and a + b + c < 1.

(G2) Then for ζ, ξ, µ ≥ 0, we have

G(ζ, ξ, ξ, ζ, ζ + ξ, µ) = ζ − aξ − bξ − c
ζ(ζ + ξ)

1 + ζ + ξ + µ
.

It is evident that G(ζ, ξ, ξ, ζ, ζ + ξ, µ) ≤ 0 =⇒ ζ ≤ ϕ(ξ) where ϕ(ξ) = hξ and h =
(

a+b
1−b

)

< 1.

(G3) G(ζ, ζ, 0, 0, ζ, ζ) = (1 − a)ζ > 0 for all ζ > 0.

(G4) G(ζ, 0, 0, ζ, ζ, 0) =
ζ+(1−c)ζ2

1+ζ
> 0 for all ζ > 0.

Example 3.6. Let G(r1, r2, r3, r4, r5, r6) = r1 − ar2 − b
r3r6

r5+r6+1
− cr4, 0 < a, b, c < 1 and a + b + c < 1.

(G2) Then for ζ, ξ, µ ≥ 0, we have

G(ζ, ξ, ξ, ζ, ζ + ξ, µ) = ζ − aξ − b
ζξ

1 + ζ + ξ + µ
− cζ.

It is evident that G(ζ, ξ, ξ, ζ, ζ + ξ, µ) ≤ 0 =⇒ ζ ≤ ϕ(ξ) where ϕ(ξ) = hξ and h = a
1−b−c

< 1.

(G3) G(ζ, ζ, 0, 0, ζ, ζ) = (1 − a)ζ > 0 for all ζ > 0.

(G4) G(ζ, 0, 0, ζ, ζ, 0) = (1 − c)ζ > 0 for all ζ > 0.
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4. Results on metric-like spaces

4.1. Fixed point results under σ-implicit contractive mappings

We start with defining σ-implicit contractive mappings on RMLS under implicit relation G ∈ Υ.

Definition 4.1. Let (E, σ,R) be an RMLS and T : E → E be a given mapping. A mapping T is said to

be a σ-implicit type mapping, if there exist G ∈ Υ, such that for (ν, ϑ) ∈ E × E with (ν, ϑ) ∈ R,

G
(

σ(T ν,Tϑ), σ(ν, ϑ), σ(ν,T ν), σ(ϑ,Tϑ), σ(ν,Tϑ), σ(ϑ,T ν)
)

≤ 0. (4.1)

Now, we are equipped to state and prove our first main result as follows:

Theorem 4.2. Let (E, σ,R) be an RMLS and T : E → E. Assume that

(a) there exists a subset Y ⊆ E with TE ⊆ Y such that (Y, σ) is R-complete;

(b) X(T ,R) , ∅;

(c) R is T -closed;

(d) T is σ-implicit type mapping;

(e) T is R-sequentially-continuous.

Then there exists a point ν∗ ∈ f ix(T ).

Proof. Let ν0 ∈ X(T ,R). Define νn+1 = T νn = T
n+1ν0 for all n ∈ N∗. If there exists n0 ∈ N

∗ such that

T νn0
= νn0

then νn0
∈ f ix(T ) and there is nothing to prove. Assume that νn+1 , νn for all n ∈ N∗ so

that σ(Tσn+1,Tσn) > 0. Since (ν0, T ν0) ∈ R, by condition (b),

(T ν0,T
2ν0), (T 2ν0,T

3ν0), · · · , (T nν0,T
n+1ν0) ∈ R,

and so

(νn, νn+1) ∈ R for all n ∈ N∗.

Hence {νn} is an R-preserving sequence. Using the condition (d) for ν = νn, ϑ = νn+1, we have (for all

n ∈ N∗)

G

(

σ(T νn,T νn+1), σ(νn, νn+1), σ(νn,T νn),

σ(νn+1,T νn+1), σ(νn,T νn+1), σ(νn+1,T νn)

)

≤ 0

or

G

(

σ(νn+1, νn+2), σ(νn, νn+1), σ(νn, νn+1),

σ(νn+1, νn+2), σ(νn, νn+2), σ(νn+1, νn+1)

)

≤ 0

Using property (σ3) and (G1), we can write

G

(

σ(νn+1, νn+2), σ(νn, νn+1), σ(νn, νn+1),

σ(νn+1, νn+2), σ(νn, νn+1) + σ(νn+1, νn+2), σ(νn+1, νn+1)

)

≤ 0.

It follows from (G2) that there is ϕ ∈ Φ such that

σ(νn+1, νn+2) ≤ ϕ(σ(νn, νn+1)). (4.2)

By property (σ3), (4.2) and for all n, m ∈ N∗ with m > n, we have

σ(νn, νm) ≤ σ(νn, νn+1) + σ(νn+1, νn+2) + · · · + σ(νm−1, νm)

AIMS Mathematics Volume 6, Issue 8, 8959–8977.
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≤ (ϕn + ϕn+1 + · · · + ϕm−1)σ(ν0,T ν0)

=

m−1
∑

j=n

ϕ j(σ(ν0, T ν0))

=

m−1
∑

j=1

ϕ j(σ(ν0, T ν0)) −

n−1
∑

j=1

ϕ j(σ(ν0, T ν0))

→ 0 as n→ ∞.

Thus limn,m→∞ σ(νn, νm) = 0. Therefore {νn} is Cauchy sequence in Y. Hence, {νn} is an R-preserving

Cauchy sequence in Y. By R-completeness of (Y, σ), so the sequence {νn} converges to some ν∗ in

(Y, σ) i.e.,

lim
n→∞
σ(νn, ν∗) = σ(ν∗, ν∗) = lim

n,m→∞
σ(νn, νm) = 0. (4.3)

By condition (e), νn+1 = T νn →
τσ T ν∗, so that

lim
n→∞
σ(νn+1,T ν∗) = lim

n→∞
σ(T νn,T ν∗) = σ(T ν∗,T ν∗) = lim

n,m→∞
σ(νn, νm) = 0. (4.4)

Using property (σ3), (4.3) and (4.4), we have σ(ν∗,T ν∗) = 0. Thus f ix(T } = {ν∗}. �

Theorem 4.3. The conclusion of Theorem 4.2 remains true for G ∈ Υ′, if the condition (e) is replaced

by

(e’) R|Y is σ-self-closed.

Proof. By Theorem 4.2, we observe that the sequence {νn} is an R-preserving sequence in Y and

νn →
τσ ν∗, and there exists a subsequence {νnk

} of {νn} with [νnk
, ν∗] ∈ R, for all k ∈ N∗. Using (d) for

ν = νnk
, ϑ = ν∗, we have

G

(

σ(T νnk
,T ν∗), σ(νnk

, ν∗), σ(νnk
,T νnk

),

σ(ν∗,T ν∗), σ(νnk
,T ν∗), σ(ν∗,T νnk

)

)

≤ 0.

Taking the limit as k → ∞ and using (4.3), we have

G
(

σ(ν∗,T ν∗), 0, 0, σ(ν∗,T ν∗), σ(ν∗,T ν∗), 0)
)

≤ 0.

It follows from (G4) that σ(ν∗,T ν∗) = 0, that is, f ix(T ) = ν∗. �

In what follows, we give a sufficient condition for the uniqueness of the fixed point in Theorems 4.2

and 4.3.

Theorem 4.4. Let all the conditions of Theorem 4.2 or Theorem 4.3, and

( f ′) P(T ̺,T ρ;Rs) , ∅ for all ̺, ρ ∈ f ix(T ) ⊂ E.

Then T has a unique fixed point.

Proof. By Theorem 4.2, f ix(T ) , ∅. Consider two arbitrary elements ̺ , ρ ∈ f ix(T ). Since

P(̺, ρ;Rs) , ∅, there exists a path (say {µ0, µ1, . . . , µk}) of some finite length k in Rs from ̺ to ρ

(with µi , µi+1 for all 0 ≤ i ≤ k − 1). Then

AIMS Mathematics Volume 6, Issue 8, 8959–8977.
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µ0 = ̺, µk = ρ, (µi, µi+1) ∈ Rs for each 0 ≤ i ≤ k − 1.

As µi ∈ f ix(T ), Tµi = µi for all 0 ≤ i ≤ k − 1. Also by (b), [T nµi,T
nµi+1] ∈ R for all 0 ≤ i ≤ k − 1.

Using (d) for ν = T nµi, ϑ = T
nµi+1, we have

G

(

σ(TT nµi,TT
nµi+1), σ(T nµi,T

nµi+1), σ(T nµi,TT
nµi),

σ(T nµi+1,T
nTµi+1), σ(T nµi,TT

nµi+1), σ(T nµi+1,TT
nµi)

)

≤ 0,

i.e.,

G

(

σ(µi, µi+1), σ(µi, µi+1), σ(µi, µi),

σ(µi+1, µi+1), σ(µi, µi+1), σ(µi+1, µi)

)

≤ 0

or

G
(

σ(µi, µi+1), σ(µi, µi+1), 0, 0, σ(µi, µi+1), σ(µi+1, µi)
)

≤ 0,

which is a contradiction to (G3). Thus, T has a unique fixed point. �

If we set Y = E in Theorem 4.2, we have consequences.

Corollary 4.5. Let (E, σ,R) be an RMLS and T : E → E. Suppose that the following conditions hold:

(a) (E, σ) is R-complete;

(b) X(T ,R) , ∅;

(c) R is T -closed;

(d) T is σ-implicit type mapping;

(e) T is R-sequentially-continuous, or

(e’) R|E is σ-self-closed with G ∈ Υ′.

Then there exists a point ν∗ ∈ f ix(T ). In addition, if P(̺, ρ;Rs|E) , ∅ for all ̺, ρ ∈ f ix(T ). Then T

has a unique fixed point.

Theorem 4.6. The conclusion of Theorem 4.4 remains true, if the condition (f) is replaced by

( f ′) T (E) is Rs-directed;

( f ′′) R|T (E) is complete.

Proof. Suppose that ( f ′) holds. Then for each pair of points (̺, ρ) ∈ T (E), there exists ω ∈ E such that

[̺, ω] ∈ R and [ρ, ω] ∈ R so that the finite sequence {̺, ω, ρ} is a path of length 2 from ̺ to ρ in Rs.

Thus, for each ̺, ρ ∈ T (E), P(̺, ρ;Rs) , ∅ and hence result follows from Theorem 4.4.

Alternatively, we suppose that ( f ′′) holds, then for each pair of points (̺, ρ) ∈ T (E), [̺, ρ] ∈ R,

which implies that {̺, ρ} is a path of length 1 from ̺ to ρ in Rs, so that P(̺, ρ;Rs) , ∅, for each

̺, ρ ∈ T (E), and hence result follows from Theorem 4.4. �

4.2. Periodic point results

Definition 4.7. [14] A mapping T : E → E is said to have the property (P) if it has no periodic points,

i.e., if f ix(T n) = f ix(T ) for every n ∈ N, where f ix(T ) := {u ∈ E : T u = u}.

Theorem 4.8. In addition to the assumptions of Theorem 4.2, if ν∗ ∈ f ix(T n) and ν∗ < f ix(T ) implies

(ν∗,T ν∗) ∈ R, then T has the property (P).
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Proof. Let ω0 ∈ X(T ,R), i.e., (ω0,Tω0) ∈ R, so by condition (b), we have (ωn, ωn+1) ∈ R, for all

n ∈ N∗. Define ωn+1 = Tωn = T
n+1ω0, for all n ∈ N0. If there exists n0 ∈ N

∗ such that Tωn0
= ωn0

,

then ωn0
∈ f ix(T ) and there is nothing to prove.

Assume that ωn+1 , ωn, for all n ∈ N∗. Then (ωn, ωn+1) ∈ R (for all n ∈ N∗). Using condition (d)

for ω = ωn and ϑ = Tωn, we have

G

(

σ(Tωn, T
2ωn), σ(ωn,Tωn), σ(ωn, Tωn),

σ(Tωn, T
2ωn), σ(ωn, T

2ωn), σ(Tωn, Tωn)

)

≤ 0,

i.e.,

G

(

σ(ωn+1, ωn+2), σ(ωn, ωn+1), σ(ωn, ωn+1),

σ(ωn+1, ωn+2), σ(ωn, ωn+2), σ(ωn+1, ωn+1))

)

≤ 0.

Using property (σ3) and (G1), we get

G

(

σ(ωn+1, ωn+2), σ(ωn, ωn+1), σ(ωn, ωn+1),

σ(ωn+1, ωn+2), σ(ωn, ωn+1) + σ(ωn+1, ωn+2)), σ(ωn+1, ωn+1))

)

≤ 0.

It follows from (G2) that there is ϕ ∈ Φ such that for all n ∈ N∗

σ(ωn+1, ωn+2) ≤ ϕ(σ(ωn, ωn+1)). (4.5)

Following the remaining proof of Theorem 4.2, {ωn} is a Cauchy sequence in (E, σ). UsingR-complete

and R-continuity of T , Tω = ω. Finally, we show that f ix(T n) = f ix(T ) for any n ∈ N. Let on

contrary that ω ∈ f ix(T n) and ω < f ix(T ) for some n ∈ N. Then σ(ω,Tω) > 0 and (ω,Tω) ∈ R. By

condition (b), we have (T iω,T i+1ω) ∈ R for all i ∈ N∗. From (4.5), we have

σ(ω,Tω) = σ(T nω,TT nω)

= σ(ωn, ωn+1)

≤ ϕ(σ(ωn−1, ωn))

...

≤ ϕn(σ(ω,Tω)),

a contradiction, as ϕ(ζ) < ζ. Therefore, f ix(T n) = f ix(T ) for all n ∈ N. �

Choosing G ∈ Υ from Examples 3.2–3.6, we have the following consequences.

Corollary 4.9. Let all the conditions of Theorems 4.2–4.8 be satisfied, except that the assumption of

σ-implicit contractive mapping for G ∈ Υ is replaced by either of the form

(I)

σ(Tϑ,T ν) ≤ a max{σ(ϑ, ν), σ(ϑ,Tϑ), σ(ν,T ν)} − b[σ(ϑ,T ν) + σ(Tϑ, ν)],

where 0 ≤ a < 1, b > 0, or

(II)

[σ(Tϑ,T ν)]2 ≤ a[σ(ϑ, ν)]2 + b
[σ(ϑ,Tϑ)]2 + [σ(ν,T ν)]2

1 + σ(ϑ,T ν) + σ(Tϑ, ν)
,

where 0 < a, b < 1, a + 2b < 1,

√

a+b
1−b
< 1, or
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(III)

[σ(Tϑ,T ν)]2 ≤ a[σ(ϑ, ν)]2 + b
[σ(ϑ,Tϑ)]2 + [σ(ν,T ν)]2

1 + [σ(ϑ,T ν)]2 + [σ(Tϑ, ν)]2
,

where 0 < a, b < 1, a + 2b < 1,

√

a+b
1−b
< 1, or

(IV)

σ(Tϑ,T ν) ≤ aσ(ϑ, ν) + bσ(ϑ,Tϑ) + c
σ(ν,T ν)σ(ϑ,T ν)

1 + σ(ϑ,T ν) + σ(Tϑ, ν)
,

where 0 < a, b, c < 1, a + b + c < 1, or

(V)

σ(Tϑ,T ν) ≤ aσ(ϑ, ν) + b
σ(ϑ,Tϑ)σ(Tϑ, ν)

1 + σ(ϑ,T ν) + σ(Tϑ, ν)
+ c σ(ν,T ν),

where 0 < a, b, c < 1, a + b + c < 1.

Then f ix(T ) is a singleton.

5. Illustrative example

Example 5.1. Consider the set E = [0,∞), and define a metric-like σ and mapping T by

σ(ν, ϑ) =

{

3ν, ν = ϑ,

max{ν, ϑ}, ν , ϑ,
and T (ν) =

{

ν

3
, ν ∈ [0, 1],

3ν, ν > 1,

respectively. Define a binary relation R by

(ν, ϑ) ∈ R⇔ ν, ϑ ∈ {0} ∪

{

1

3n
: n ∈ N

}

for all ν, ϑ ∈ E.

Then E is R-complete. Clearly, X(T ,R) , ∅ as ( 1
3
, 1

32 ) ∈ R. Also R is T -closed and T is

R-sequentially-continuous. Indeed, let {νn} be an arbitrary R-preserving sequence such that νn →
τσ ν (

for some ν ∈ E), that is, {νn} is a sequence in [0, 1] such that (νn, νn+1) for all n with

limn→∞ σ(νn, ν) = σ(ν, ν). Then ν ∈ [0, 1] and

σ(T ν,T ν) = σ(
ν

3
,
ν

3
) = ν =

1

3
σ(ν, ν)

=
1

3
lim
n→∞
σ(νn, ν)

=
1

3

(

lim
n→∞

{

3νn, νn = ϑ

max{νn, ϑ}, νn , ϑ

)

= lim
n→∞

{

3 νn
3
, νn = ν

max{ νn
3
, ν

3
}, νn , ν

= lim
n→∞
σ(νn, ν)

This shows that T νn →
τσ T ν and hence T is R-sequentially-continuous.
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By Example 3.2, (4.1) becomes

σ(T ν,Tϑ) ≤ a max{σ(ν, ϑ), σ(ν,T ν), σ(ϑ,Tϑ)} − b [σ(ν,Tϑ) + σ(ϑ,T ν)]. (5.1)

We show that T satisfies (5.1) by dividing the proof into four parts.

Take (ν, ϑ) ∈ R and so 0 ≤ ϑ, ν ≤ 1
3
.

• If ν = 0 and ϑ = 1/3n (similarly for ϑ = 0 and ν = 1/3n), n ∈ N, then (5.1) reduces to

1

3n+1
≤ a ·max{

1

3n
, 0,

1

3n
} − b

[

1

3n+1
+

1

3n

]

,

that is,
1

3n+1
≤ a.

1

3n
− b

[

1

3n+1
+

1

3n

]

.

• Let ϑ, ν ∈ {1/3n | n ∈ N} with 0 < ϑ < ν, i.e., ϑ ≤ ν/3. Then (5.1) reduces to

ν

3
≤ a max{ν, ν, ϑ} − b

[

ν +
ν

3

]

= a.ν − b

[

ν +
ν

3

]

.

• Let ν = ϑ = 0. The condition (5.1) is trivially true.

• Let ν = ϑ , 0.

ν ≤ a max{3ν, ν, ϑ} − b[ν +
ν

3
]

that is, 1 ≤ 3a − 4b
3
.

It can be easily checked that the above inequalities hold true for a = 4/5 and b = 1/100. Thus T is

a σ-implicit contractive mapping. Therefore, all conditions of Theorem 4.2 are satisfied and ν∗ = 0 is

a unique fixed point of T in E.

It can be noted that in this example condition (4.1) is not true if (ν, ϑ) < R. For instances, for

(ν, ϑ) = (2, 3) < R, (5.1) becomes

9 � 9a − 15b

which is not true for any a ∈ [0, 1), b ≥ 0. Even the results are not true (when (ν, ϑ) < R) for the

contraction conditions of the form

σ(T ν,Tϑ) ≤ k max

{

σ(ν, ϑ), σ(ν,T ν), σ(ϑ,Tϑ),
1

2
[σ(ν,Tϑ) + σ(ϑ,T ν)]

}

,

where k ∈ (0, 1).

6. Application

Let M(n) denote the set of all n × n matrices over C and H(n) (resp. K(n), P(n)) denote the set

of all Hermitian (resp. positive semi-definite, positive definite) matrices fromM(n). Also, we denote

the element of P(n) as X ≻ O. For a matrix B ∈ H(n), we will denote by s(B) any of its singular
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values and by s+(B) the sum of all of its singular values, that is, the trace norm ‖B‖tr = s+(B). For

C,D ∈ H(n), C � D (resp. C ≻ D) will mean that the matrix C − D is positive semi-definite (resp.

positive definite).

The following lemmas are needed in the subsequent discussion.

Lemma 6.1. [24] IfA � O and B � O are n × n matrices, then

0 ≤ tr(AB) ≤ ‖A‖tr(B).

Lemma 6.2. [24] IfA ∈ H(n) such thatA ≺ In, then ‖A‖ < 1.

We establish the existence and uniqueness of the solution of the nonlinear matrix equation (NME)

U = D +

m
∑

i=1

A∗iG(U)Ai, (6.1)

where D is a Hermitian positive definite matrix, A∗i stands for the conjugate transpose of an n × n

matrixAi and G an order-preserving continuous mapping from the set of all Hermitian matrices to the

set of all positive definite matrices such that G(O) = O.

Theorem 6.3. Consider NME (6.1). Assume that there exists a positive real number η such that

(H1) there existsD ∈ P(n) such that

m
∑

i=1

A∗iG(D)Ai ≻ 0;

(H2)
∑m

i=1AiA
∗
i ≺ ηIn.

(H3) for everyU, V ∈ P(n) such thatU � V with

m
∑

i=1

A∗iG(U)Ai ,

m
∑

i=1

A∗iG(V)Ai,

then for a ∈ [0, 1), b ≥ 0, we have














|s+(D +

m
∑

i=1

A∗iG(U)Ai)| + |s
+(D +

m
∑

i=1

A∗iG(V)Ai)|















≤ a ×max























(|s+(U)| + |s+(V)|),

(|s+(U)| + |s+(D +
∑m

i=1A
∗
iG(U)Ai)|),

(|s+(V)| + |s+(D +
∑m

i=1A
∗
iG(V)Ai)|)























−b

[

(|s+(U)| + |s+(D +
∑m

i=1A
∗
iG(V)Ai)|)

+(|s+(V)| + |s+(D +
∑m

i=1A
∗
iG(U)Ai)|)

]

.

Then the NME (6.1) has a unique solution. Moreover, the iteration

Un = D +

m
∑

i=1

A∗iG(Un−1)Ai

whereU0 ∈ P(n) satisfies

U0 � D +

m
∑

i=1

A∗iG(U0)Ai,

converges in the sense of trace norm ‖.‖tr to the solution of the matrix equation (6.1).
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Proof. Define a mapping T : P(n)→ P(n) by

T (U) = D +

m
∑

i=1

A∗iG(U)Ai, for allU ∈ P(n),

and a binary relation

R = {(U, V) ∈ P(n) × P(n) : U � V}.

Then the fixed point of the mapping T is a solution of the matrix equation (6.1). Notice that T is well

defined, R-continuous and R is T -closed. Since
m

∑

i=1

A∗iG(D)Ai ≻ 0,

for someD ∈ P(n), we have (D,T (D)) ∈ R and hence P(n)(T ;R) , ∅.

Let σ : P(n) × P(n)→ R+ be defined by

σ(U,V) = (‖U‖ + ‖V‖) for allU,V ∈ P(n).

Then (P(n), σ,R) is a complete R-relational metric-like space.

Now

σ(T (U),T (V)) = (‖T (U)‖ + ‖T (V)‖) (6.2)

=















|s+(D +

m
∑

i=1

A∗iG(U)Ai)| + |s
+(D +

m
∑

i=1

A∗iG(V)Ai)|















≤ a max























(|s+(U)| + |s+(V)|),

(|s+(U)| + |s+(D +
∑m

i=1A
∗
iG(U)Ai)|),

(|s+(V)| + |s+(D +
∑m

i=1A
∗
iG(V)Ai)|)























− b

[

(|s+(U)| + |s+(D +
∑m

i=1A
∗
iG(V)Ai)|)

+(|s+(V)| + |s+(D +
∑m

i=1A
∗
iG(U)Ai)|)

]

= a max
{

(‖U‖ + ‖V‖), (‖U‖ + ‖T (U)‖), (‖V‖ + ‖T (V)‖)
}

− b
[

(‖U‖ + ‖T (V)‖) + (‖V‖ + ‖T (U)‖)
]

= a max
{

σ(U,V), σ(U,T (U)), σ(V,T (V))
}

− b[σ(U,T (V)) + σ(V,T (U))].

Consider G ∈ Υ as

G(~1, ~2, ~3, ~4, ~5, ~6) = ~1 − a max{~2, ~3, ~4} + b[~5 + ~6]

where a ∈ [0, 1), b ≥ 0, ~i ∈ R+ (i = 1, 2, 3, 4, 5). Then (6.2) reduces to

G

(

̺(T (U),T (V)), ̺(U,V), ̺(U,T (U)),

̺(V,T (V)), ̺(U,T (V)), ̺(V,T (U))

)

≤ 0.

Thus all the hypotheses of Theorem 4.2 are satisfied and thus there exists Û ∈ P(n) such that

T (Û) = Û, and hence the matrix equation (6.1) has a solution in P(n). Furthermore, due to the

existence of the least upper bound and greatest lower bound for each U,V ∈ P(n), we have

P(U,V;R|P(n)) , ∅ for all U,V ∈ P(n). Hence, by Theorem 4.4, T has a unique fixed point and so

we conclude that the matrix equation (6.1) has a unique solution in P(n). �

AIMS Mathematics Volume 6, Issue 8, 8959–8977.



8972

7. Numerical experiments

In this section, we consider some numerical results. All experiments were run on a macOS Mojave

version 10.14.6 CPU @1.6 GHz intel core i5 8GB with MATLAB R2020b as the programming

language (Online). In particular, rand(n) syntax is used to generate random square matrix of order n.

The number of necessary iterations is denoted by Iter. No., initial matrix is denoted by Int. Mat.,

Dimension is denoted by Dim., Minimum eigenvalue of a matrix is denoted by Min(Eng) and the

trace norm of the residual is denoted by Res (Res(X) = ‖Xn+1 − Xn‖tr). We have assigned tol = 10−10

in all studies.

Example 7.1. Consider matrices with randomly generated coefficients by

A1 = K
−(1/2)

1
ÃK

−(1/2)

1
, A2 = K

−(1/2)

2
B̃K

−(1/2)

2
,

A3 = K
−(1/2)

3
C̃K

−(1/2)

3
,

where

K1 = I + Ã
∗Ã, K2 = I + B̃

∗B̃, K3 = I + C̃
∗C̃,

and

(Ã)i j =
170

i + j − 1
, B̃ =

1

4
Ã, (C̃)i j =

230

i + j − 1
.

Take n = 4 and

D =































0.002001134214072 0.000001512247318 0.000001890089141 0.000002267448494

0.000001512247318 0.002002041472151 0.000002570454118 0.000003098868007

0.000001890089141 0.000002570454118 0.002003250525038 0.000003929941830

0.000002267448494 0.000003098868007 0.000003929941830 0.002004760277918































.

We take η = 4, a = 0.7, b = 0.001 and G(U) = U5/2 to test hypothesis of Theorem 6.3. The numerical

results are given in Table 1.

Table 1. Three initalization based analysis.

Int. Matrix G(U) η Dim Iter no. CPU(Sec) Error(×1.e-15) Min(Eig)

U0 U5/2 4 4 5 0.26442327 0.025142 0.002

V0 V5/2 4 4 5 0.02830777 0.022915 0.002

W0 W5/2 4 4 5 0.00484885 0.027327 0.002

We use the initial values

U0 =































0.017646443918273 0.023512262592047 0.029297021502829 0.034881823092682

0.023512262592047 0.031715226102244 0.039815171016495 0.047680128367051

0.029297021502829 0.039815171016495 0.050211413538305 0.060332232799390

0.034881823092682 0.047680128367051 0.060332232799390 0.072697850175567































,

V0 =































0.008823221959136 0.011756131296024 0.014648510751414 0.017440911546341

0.011756131296024 0.015857613051122 0.019907585508248 0.023840064183525

0.014648510751414 0.019907585508248 0.025105706769152 0.030166116399695

0.017440911546341 0.023840064183525 0.030166116399695 0.036348925087784































,
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W0 =































0.004411610979568 0.005878065648012 0.007324255375707 0.008720455773170

0.005878065648012 0.007928806525561 0.009953792754124 0.011920032091763

0.007324255375707 0.009953792754124 0.012552853384576 0.015083058199847

0.008720455773170 0.011920032091763 0.015083058199847 0.018174462543892































,

whereU0,V0,W0 ∈ P(4).

After 5 successive iterations, we obtain the following pds

X̂ =






























0.002001137516642 0.000001516648878 0.000001895574989 0.000002273982415

0.000001516648878 0.002002047409975 0.000002577909508 0.000003107798330

0.000001895574989 0.000002577909508 0.002003259927822 0.000003941241995

0.000002273982415 0.000003107798330 0.000003941241995 0.002004773895785































.

The graphical view of convergence and X̂ are shown in Figures 1 and 2, respectively:
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E
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Convergence behaviours, log plot

Initial U0

Initial V0

Initial W0

Figure 1. Convergence analysis graph.

Figure 2. Solution gragh.
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Example 7.2. Consider the following matricesA1,A2,A3,D ∈ M(4):

A1 =































0.0120 + 0.0049i 0.0110 − 0.0017i 0.0231 − 0.0009i 0.0289 + 0.0039i

0.0420 − 0.0015i 0.0113 + 0.0006i 0.0319 + 0.0008i 0.0216 − 0.0022i

0.0428 − 0.0008i 0.0268 + 0.0041i 0.0459 + 0.0047i 0.0442 + 0.0027i

0.0482 − 0.0023i 0.0381 + 0.0016i 0.0081 − 0.0016i 0.0197 + 0.0048i































,

A2 =































0.0486 + 0.0007i −0.0167 + 0.0006i −0.0094 + 0.0004i 0.0393 + 0.0029i

−0.0155 + 0.0012i 0.0056 + 0.0015i 0.0081 + 0.0027i −0.0217 + 0.0023i

−0.0076 + 0.0007i 0.0413 + 0.0023i 0.0467 + 0.0003i 0.0269 + 0.0017i

−0.0232 + 0.0000i 0.0161 + 0.0016i −0.0157 + 0.0004i 0.0484 + 0.0021i































,

A3 =































0.0066 + 0.0012i 0.0064 + 0.0011i 0.0043 + 0.0023i 0.0290 + 0.0029i

0.0118 + 0.0042i 0.0150 + 0.0011i 0.0268 + 0.0032i 0.0228 + 0.0022i

0.0073 + 0.0043i 0.0227 + 0.0027i 0.0025 + 0.0046i 0.0171 + 0.0044i

0.0001 + 0.0048i 0.0156 + 0.0038i 0.0041 + 0.0008i 0.0205 + 0.0020i































,

D =































0.0020 + 0.0000i 0.0000 + 0.0000i 0.0000 − 0.0000i 0.0000 − 0.0000i

0.0000 − 0.0000i 0.0020 + 0.0000i 0.0000 − 0.0000i 0.0000 − 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0020 + 0.0000i 0.0000 − 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0020 + 0.0000i































.

To see the convergence of the sequence {Un} defined in (6.3), we start with the following initializations:

U0 =































0.0060 + 0.0000i 0.0002 + 0.0001i 0.0027 + 0.0001i 0.0024 + 0.0002i

0.0002 − 0.0001i 0.0042 + 0.0000i 0.0047 − 0.0001i 0.0024 + 0.0000i

0.0027 − 0.0001i 0.0047 + 0.0001i 0.0113 + 0.0000i 0.0058 + 0.0001i

0.0024 − 0.0002i 0.0024 − 0.0000i 0.0058 − 0.0001i 0.0077 + 0.0000i































,

V0 =































0.0030 + 0.0000i 0.0001 + 0.0001i 0.0014 + 0.0001i 0.0012 + 0.0001i

0.0001 − 0.0001i 0.0021 + 0.0000i 0.0023 − 0.0000i 0.0012 + 0.0000i

0.0014 − 0.0001i 0.0023 + 0.0000i 0.0057 + 0.0000i 0.0029 + 0.0000i

0.0012 − 0.0001i 0.0012 − 0.0000i 0.0029 − 0.0000i 0.0038 + 0.0000i































,

W0 =































0.0015 + 0.0000i 0.0001 + 0.0000i 0.0007 + 0.0000i 0.0006 + 0.0001i

0.0001 − 0.0000i 0.0011 + 0.0000i 0.0012 − 0.0000i 0.0006 + 0.0000i

0.0007 − 0.0000i 0.0012 + 0.0000i 0.0028 + 0.0000i 0.0014 + 0.0000i

0.0006 − 0.0001i 0.0006 − 0.0000i 0.0014 − 0.0000i 0.0019 + 0.0000i































,

whereU0,V0,W0 ∈ P(4).

We take η = 4, a = 0.8, b = 0.01 and G(U) = U7/2 to test hypothesis of Theorem 6.3. The

numerical results are given in Table 2.

Table 2. Three initialization based analysis.

Int. Matrix G(U) η Dim Iter no. CPU Error Min(Eig)

U0 U7/2 4 4 3 0.019032 0.2112 0.002

V0 V7/2 4 4 3 0.015490 0.0195 0.002

W0 W7/2 4 4 3 0.014904 0.0017 0.002
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The positive definite solution (after 3 iterations) is given by

X̂ =































0.0020 − 0.0000i 0.0000 + 0.0000i 0.0000 − 0.0000i 0.0000 − 0.0000i

0.0000 − 0.0000i 0.0020 − 0.0000i 0.0000 − 0.0000i 0.0000 − 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0020 − 0.0000i 0.0000 − 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0020 + 0.0000i































.

The graphical view of convergence is shown in Figure 3 below:
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Figure 3. Convergence analysis graph.

Remark 7.3. It is clear from the last columns of Tables 1 and 2 that the solutions of NMEs in Examples

7.1 and 7.2 are positive definite because the minimum eigenvalues of solutions for any initial matrices

are positive. Also it is evident from the convergence plots that for any initial guess, we get convergence

parallel. It can also be visualized from the surface plot of solution in the first example, as it is pointed

upwards.
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21. J. J. Nieto, R. R. López, Contractive mapping theorems in partially ordered sets and applications

to ordinary differential equations, Order, 22 (2005), 223–239.
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