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Abstract

In this paper, our goal is to determine sufficient conditions for the family of Struve functions in order to belong to
the classes of uniformly convex functions and uniformly starlike functions in the open unit disk U. Several corollaries

and consequences of our main results are also derived.
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Introduction and Definitions
Let A be the class of functions f (z) of the form:
f@=2z+)a,z" (1)
n=2

which are analytic in the open unit disk

U={z:zeC and |z|<1}

As usual, we denote by S the subclass of A consisting of functions
which are normalized by f(0)=0=f(0) - 1 and are also univalent in U.
Moreover, following Silverman [1], we denote by T the subclass of A
consisting of functions of the form:

f@=2-3a2 (a,20) @)

Also, for functions f € A given by (1) and g € A given by

g(z)=z+ anz"
n=2
the Hadamard product (or convolution) of f and g is defined by

(F*2) () =f2)*g(2) =2+ a,h,z" (€ U)
n=2
A function f € A is said to be starlike of order ¢ = (0<a<1) inU

if and only if
R(Mjm (zeU;0<a<]1)
f(2)
This function class is denoted by S'(a): We also write
ST (0)=S"

where S* denotes the class of functions f € A such that the image f(U) is
starlike with respect to the origin. A function f € A is said to be convex
of order & =(0<a<1) in U if and only if

R[l+w]>a (zeU; 02a<))
/'@

This function class is denoted by K(a): As usual, we write

K(0)=K

for the well-known class of convex functions in U. It is a well-established
fact that

f(@eK(a) < zf'(2)S (a)

It is well known that the Theory of Special Functions play an
important role in Geometric Function Theory, especially in the
solution by de Branges [2] of the famous Bieberbachconjecture.
There is an extensive literature dealing with geometric properties of
different families of special functions, particularly the generalized
hypergeometric functions [3-6] and the Bessel functions [7-10]. We
recall here the Struve function of order p [11,12], denoted by Hp (z)
and given by

Hp(z):i 3 (=D 3 (gj (zeC), 3)
"‘Or(n+2j F(p+n+2j

which is a particular solution of the following second-order non-
homogeneous differential equation:
4(z/ 2™

2w @) o () + (& ) () = D @
VAT p+)
where the parameter p is an unrestricted real (or complex) number.
The solution of the following non-homogeneous differential equation:

4(z/ 2)*"

2Z2w"(2)+zw' (2)—(Z°+p ) w(z) = (5)

1 >
JzT (p+ E)
is called the modified Struve function of order p and is defined by

@ 2n+p+l
L(z)=—ie ™" Hp(iz)=§ 3 ! 3 (gj (zeQ),
" T| n+ 5 I''p+n+ 5
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The following second-order non-homogeneous linear differential
equation [11,12]

4(z/ 2)""

22 w"(z)+bzw'(z) +[cz’—p> +(1-b) plw(z) = (b,p,c€C) 6)

zT (p+5)

is a natural generalization of the Struve differential equation (4).
It is of interest to note that, in its special case when b=c=1, we get
the Struve equation (4). Also, for c=-1 and b=1, we get the modified
Struve equation (5). We now denote by Wb (z) the generalized Struve
function of order p given by

(o)’ S\
b+2 (2 (2€0),
r‘(p+—n4—44§47)

n=0

W,he (2) :=i 3
(3]

which is a particular solution of the differential equation (6). Although
the series in the above definition is convergent everywhere in C, the
functionw,  is generally not univalent in U: We consider the function
u,, defined by

up,b,c (Z) = 2[7 \/;r(p+ b —; 2 j Zﬁ%ﬂ Wp,b.c (\/;) (\/1_ ::1) B

by using the well-known Pochhammer symbol (or the shifted factorial)
()n given, in terms of the familiar Gamma function, by

1
@, =@={
) A+ (A+2)...

(n=0)
(A+n-1) (neN={,2,3,..})

We can express u, (2) as follows:

)
u,, (2= ﬁ 2" =by+bz+bz +..+b "+,

= m, 5

Where

m:=p+b+T2¢O,—l,—2,....

This function L (z) is analytic on C and satisfies the following
second-order in homogeneous linear differential equation:
47°u"(z) + 2(2p + b + 3)zu'(z) + (cz + 2p + b)u(z) =2p + b

For our convenience throughout this paper, we use the following

notations:

b+2
wp’b,r(z) =w, (2), up,b’c(z) ::up(z) and m= p+T

Moreover, if c <0 and m > 0, we let

—c n—1
zup(z):z-i—i%z”
"2 (m), (Ej

=7+ an -1z" ™)
n=2

And [_C)”'
¥(2)=z2-u ()] =z- > —*
= [2 (8)
n-1 2 -

Recently, Yagmur and Orhan [11,12] determined various sufficient
conditions for the parameters p; b and c such that the functions u (z)
or z > zu (z) are univalent, starlike, convex and close-to-convex in the
open unit disk U. Here, in our present investigation, we consider the
following subclasses which were studied earlier by Rosy et al. [13] and
Subramanian et al. [14].

Definition 1: [13] For $>0; a function f € A of the form (1) is said
to be in the subclass USD(B) of the normalized univalent function class
of S if it satisfies the following inequality:

RE@) 2Bl7"(2)| (zeU)

Definition 2: [14] For >0, a function f € T of the form (2) is said to
be in the subclass UST N(p) if it satisfies the following analytic criterion:

R[f(l)—f(é)
(z=5f(2)

Motivated by several earlier results on connections between various
subclasses of analytic and univalent functions by using hypergeometric
functions [3,4,6,15] and by the recent investigations of Baricz [7-9], in
the present paper we determine sufficient conditions for the function
h (z) given by

j>ﬂ ((z,£) e UxU)

h,(z):=(1-w)zu (z)+u Zupy (2)

;c)n—l
:Z+i(1+“/l—ﬂ)(43 " (0spugl ©)
"= (m),, (Ej

in order to belong to the above-defined classes USD(B) and UST N(f):

A Pair of Useful Lemmas

To prove the main results in our present investigation, we shall
need each of the following lemmas.

Lemma 1: [13] A function f of the form (1) is in the class USD(P) if

> [n(1-B)+n’Bl|a,|<1 (10)

n=2
Lemma 2: [14] A function f of the form (2) is in the class UST N(p)
if

0

D> [n(3-p)-2]a,|s1-B 11)

n=2

Main Results and their Consequences
Our first main result is asserted by Theorem 1 below.

Theorem 1: Let c<0 and m>0. Then hu(z) 2 USD(p) if

upu, (D +(p+ B+ 2B u, ) +[2(u+ B~ pf) +1]u, (D+u (D2 (12)

Proof: Let
‘ (__EZ n—1
zu,(z) =z+ 24732”
n=2 m =
m..(3)

Upon taking z=1, we have
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" ( 7)n1
1= 34
" ““)n'(zl_l

Differentiating zup(z) with respect to z and setting z=1, we have

(13)

I " (_%)n—l
zup(z)+up(z)=l+2n—32"71, (14)
"= (m)n—l ()
2 n—1
so that
| U
up(1)+up(1) —1+Z:n—3 (15)
"= (m), 1(7j

Further, by differentiating zu’p(z) + up(z) with respect to z and
taking z = 1, we get

Cin-1
i m n-1
So that
. , o (_%)"’I
u, (1) +2u,(1) = zn(n_ 1)—3 -
" ( )n 1(7J

A further differentiation similarly yields

n-1

C
zu, (2) +3u,(1) = Zn(n 1) (n— Z)Qz“ (18)

3
(m),, (2 )nil

n-1

—Cj

w (1) +3u,(1) = Z”(n 1) (n— 2)(—3 (19)
(m),_ 1( ]

And

Since hp(z) € USD(P); by virtue of Lemma 1 it suffices to show that

n-1

C
i(Hnﬂﬂ)(n(lﬂMzﬂ]%il 20)

"= (m)nfl E

c
Wenowlet S(4,8,a) = i(l +nu—u) (n(l-B+n’p] [ j

p 3
(m), (2)”71

so that

(4 (g
SUp =i n = s o) 3w
.. (3)

= (m),, (E] "=

o)
4

+<1+u—ﬂ+ﬂﬁ>in(3
"= (m)n 1( j

Writing
n’ =n(n-1)(n—2)+3n(n—1)+n and n’ =n(n-1)+n we
get

n-1

-5)
S, A, B,a) = yﬂz n(n—1)(n—2)

(m),_ 1(3]
)
ek =)y nin-)——2

S e ).
. (-d)

+ n

p 3
(m),, (2 )n—l

From (15), (17) and (19), we get
S, 4, B,a) = pflu, () +3, (D] + (e + B — pf) [, (1) +2u, (D] + 1, (1) 1]
wpu, () +(p+ B +2uf) w,()+[2(u+ - pf+ D] u,(D+u, ()-1

But this last expression is bounded above by 1 if (12) holds true.
Thus the proof of Theorem 1 is completed.

Theorem 2: Let c<0 and m>0. Then zup(z) € USD(P) if

pu,(D)+u, )+ u, ()2 (1)

Proof: By virtue of Lemma 1, it suffices to show that
n-1

0

-5)
S [n(1- B)+(n* fy——2

n=2 é
(m)“(zll

We note that
hy(z) =zu ()

Hence, by taking p=0 in (20), we get the above inequality. Therefore,
by setting =0 in Theorem 1, we get the desired result given in (21).

Corollary 1: Let c<0 and m>0. Then zup(z) € USD(0) if and only if
u (1) +u, (1)<2 (22)
Theorem 3: Let c<0 and m>0. Then hp(z) € UST N(P) if

MG =By, D+[G= A 2u+D=2u]u, D+~ u, (D<2(1-5) (23)

Proof: By virtue of Lemma 2, it suffices to show that
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0

-5
> (4 nu— ) [3-yn-2]——2

n=2 é
(m), (2 jnl

We now let

-3
S, Ba) =Y (1+nu- G- pn-2]1——2

p= 37
(m),_, ( ) )nil

That is

-5)
SAfoa) =3 w3 fl——t—

n=2

&
G- A= -2 n——
(m)nq (2)

20-mY, (—ﬁj

n=2 é ’
(m),, (2 jﬂ,l

which, upon writing n* = n(n - 1) + n, yields

n—|

-3)
S, 4, Bra) =u (- B> n(n-1)——2

n=2 g ’
(m), (2 ll

-] -4
FG- 2y 21 Y

From (13), (15) and (17), we get

S, A, f.0)=u(3= A)lu, (1) +2u, ]+ G~ -2 [u,(D)+u, (D -1],
—2(1=)[u, () -1]

=uB-Pu,M+G-AH2u+D=-2ulu, M)+ -, ()-1]
But this last expression is bounded above by 1-f if the condition
(23) holds true. Thus the proof of Theorem 3 is completed.

By taking =0 in Theorem 3, we can easily deduce the following
corollary which we state here without proof.

Corollary 2: Let c<0 and m>0. Then zup(z) 2 UST N(B) if

G=pu,)+1-u,(HL2(1-p) (24)
Furthermore; zup(z) 2 UST N(0) if
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