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It is known that SWAP operation for quantum systems of arbitrary dimension can be implemented using various qudit gates. In
this paper, equivalence of some important qudit operations is demonstrated. Equivalence of the qudit operations is exploited to
minimize the circuit complexity in the previously proposed qudit SWAP gate constructions. Further, constructions of qudit SWAP
operation with minimum number of qudit gates are also proposed. Importantly, these circuit constructions of SWAP retain its
properties like symmetry and simplicity.

1. Introduction

The fundamental unit of quantum information processing is
qubit which can be realized by two-level quantummechanical
systems. The two-dimensional Hilbert space representing a
single qubit can be extended to higher dimensions of 2𝑛 with
𝑛 being the number of qubits. Nevertheless, the dimension of
the Hilbert space is not necessarily a power of two and hence
one may be interested in studying Hilbert space of arbitrary
dimension𝑑. Quantum systems of𝑑 level are known as qudits
which can be used for quantum information processing.

Two-qubit operations (also known as two-qubit gates)
are fundamental in the realization of universal quantum
circuits [1]. Some well-known two-qubit gates are Controlled
NOT, shortly CNOT, and SWAP. While the former gate
performs the NOT operation on the target qubit depending
upon the control qubit, the latter gate interchanges the
control-qubit input state and the target-qubit input state.
It is important to mention that CNOT gate along with a
few single qubit gates are capable of generating controlled
unitary gates [2, 3]. Notably, a sequence of three CNOT gates
can implement SWAP operation. One of the key issues in
quantum computing is the CNOT complexity in the gate
constructions. Over the years, efforts have been made to
reduce the gate count in the circuit constructions [4, 5]

Extension of two-qubit operation to qudit operation
is not always straightforward. In particular, retaining the
features of two-qubit operation in the generalization to

qudit operation is not easy. One such instance is the imple-
mentation of SWAP operation in the qudit setting. A few
generalizations of CNOT operation to the qudit level are
proposed with the aim to implement qudit SWAP operation.
However, the number of gates utilized in the previously
proposed circuit constructions of SWAP gate is not less than
four [6–11]. It is shown that three copies of controlled qudit
gates are sufficient to implement qudit SWAP [9]. More
recently, optimal construction of qudit SWAP gate using
generalized CNOT is shown by Wilmott and Wild [12].

SWAP operation has been employed in circuit designs
of many quantum operations (e.g., [13]). Therefore, it is
necessary to implement the SWAP operation in an optimal
way in terms of gate count and operating time. Hence circuit
constructions of SWAP gate using other quantum gates are
proposed to achieve the task of optimality. It is interesting
to note that SWAP gate, which does not produce any
entanglement, is constructed with gates capable of producing
entanglement upon acting on suitable input states.

First of all, the existence of equivalence between some
of the qudit gates is shown. Then the equivalence of gates
is exploited to minimize the number of gates used in the
previously proposed qudit SWAP constructions. It is shown
that the number of single qudit gates in the construction
of qudit SWAP can be reduced. Such constructions would
be useful in the case of high 𝑑-level system, for which a
single-qudit gate is not easy to realize in experiments. Further,
various new constructions of qudit SWAP operation with
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lesser number of gates are also proposed. It is important
to mention that the new circuits for SWAP gate retain its
symmetric property and simplicity in terms of gate count.

2. Some Known Qudit Operations

Before introducing some known qudit gates, it is necessary to
define important two-qubit gates, namely, CNOT and SWAP.
One of the qubits of CNOT gate is known as control and the
other one is called target.Whenever the control qubit is in |1⟩
state, the target qubit changes its value from |0⟩ to |1⟩ or from
|1⟩ to |0⟩. The CNOT operation is given by

CNOT |𝑥⟩ 𝑦⟩ = |𝑥⟩
𝑥 ⊕ 𝑦⟩ , (1)

where the symbol ⊕ represents the addition modulo two.The
circuit symbol for CNOT is shown in Figure 1(a) where the
dot represents the control and the symbol ⊕ represents the
target. The SWAP gate interchanges the input states, say, |𝜙⟩
and |𝜓⟩. The action of SWAP is given by

SWAP 𝜙⟩
𝜓⟩ =
𝜓⟩
𝜙⟩ . (2)

The circuit symbol for two-qubit SWAP gate is shown in
Figure 1(b). Note that the input states can also be 𝑑 dimen-
sional and hence we have qudit SWAP operation.

Now we introduce some qudit gates which are the differ-
ent versions of qudit CNOT operation. Among the various
versions, 𝐶𝑋

𝑑
is widely used and the operations of 𝐶𝑋

𝑑
are

given by

𝐶𝑋
𝑑
|𝑥⟩

𝑦⟩ = |𝑥⟩


𝑥 + 𝑦⟩ (3)

with modulo 𝑑 addition. Note that throughout the paper we
consider addition and subtraction of modulo 𝑑. The inverse
of the above operation is

𝐶𝑋
†

𝑑
|𝑥⟩
𝑦⟩ = |𝑥⟩

𝑦 − 𝑥⟩
(4)

with modulo 𝑑 subtraction. It is worth noting that 𝐶𝑋
𝑑
̸=

𝐶𝑋
†

𝑑
, implying that the gates are not Hermitian. This is the

main issue in the qudit generalization of CNOT. With the
aim of having Hermitian qudit CNOT operation, 𝐺𝑋𝑂𝑅 is
introduced. The action of 𝐺𝑋𝑂𝑅 is as follows:

𝐺𝑋𝑂𝑅 |𝑥⟩

𝑦⟩ = |𝑥⟩


𝑥 − 𝑦⟩ . (5)

Recently, 𝐶𝑋 gate is introduced with the aim of proposing a
simpler qudit SWAP gate [11]. The action of 𝐶𝑋 gate is given
as follows:

𝐶𝑋 |𝑥⟩
𝑦⟩ = |𝑥⟩

−𝑥 − 𝑦⟩ .
(6)

Apart from these gates, we have

𝑋
𝑑
|𝑥⟩ = |𝑑 − 𝑥⟩ = |−𝑥⟩ . (7)

This gate provides modulo 𝑑 complement of the input state.

3. Equivalence of Various Qudit Gates

Equivalence of the various qudit gates is identified and
mentioned in this section. The equivalence of the operation
can be checked by the action of the gates on the input states
|𝜙⟩ and |𝜓⟩ of arbitrary dimension 𝑑:

𝐺𝑋𝑂𝑅
1,2
≡ 𝑋
𝑑2
𝐶𝑋
†

𝑑1,2
, (8)

𝐺𝑋𝑂𝑅
1,2
≡ 𝐶𝑋

𝑑1,2
𝑋
𝑑2
, (9)

𝐺𝑋𝑂𝑅
2,1
≡ 𝑋
𝑑1
𝐶𝑋
†

𝑑2,1
, (10)

𝐺𝑋𝑂𝑅
2,1
≡ 𝐶𝑋

𝑑2,1
𝑋
𝑑1
, (11)

𝐶𝑋
1,2
≡ 𝑋
𝑑2
𝐶𝑋
𝑑1,2
, (12)

𝐶𝑋
1,2
≡ 𝐶𝑋

†

𝑑1,2
𝑋
𝑑2

, (13)

𝐶𝑋
2,1
≡ 𝑋
𝑑1
𝐶𝑋
𝑑2,1
, (14)

𝐶𝑋
2,1
≡ 𝐶𝑋

†

𝑑2,1
𝑋
𝑑1
. (15)

Using the equivalence given by (8) and (13), it can be shown
that

𝐺𝑋𝑂𝑅
1,2
≡ 𝑋
𝑑2
𝐶𝑋
1,2
𝑋
𝑑2
. (16)

In the similar fashion, it can be shown using the equivalence
given by (11) and (14) that

𝐺𝑋𝑂𝑅
2,1
≡ 𝑋
𝑑1
𝐶𝑋
2,1
𝑋
𝑑1
. (17)

4. Qudit SWAP Operation

It is known that the concatenation of three CNOT gates, can
implement two-qubit SWAPoperation.The CNOT swapping
circuit is shown in Figure 2. Note that the control and target
qubits are interchanged in the second gate.

Before analyzing the qudit SWAP circuits, consider a
special case. That is, we have SWAP circuits if one of the
initial states is known. The circuit in Figure 3 can swap the
state |𝜙⟩|0⟩ into |0⟩|𝜙⟩ [6].

Other possibilities of swapping the state |𝜙⟩|0⟩ using
𝐺𝑋𝑂𝑅, 𝐶𝑋

𝑑
, and 𝐶𝑋†

𝑑
gates are shown in Figure 4. Note that

all the circuits shown in Figure 4 consist of only two basic
qudit gates.

The equivalence of qudit gates identified in the last section
can be exploited to simplify the existing circuits for the qudit
SWAP gate.

The qudit SWAP gate circuit shown in Figure 5 is pro-
posed in [7, 10]. Using the equivalence given by (9) and (11),
we can simplify the circuit as shown in Figure 6. Note that
six gates are used in the previously proposed circuit (see
Figure 5), whereas only four gates were employed in the new
circuit (Figure 6). Similarly, qudit SWAP can be realized with
𝐶𝑋
𝑑
, 𝐶𝑋†
𝑑
, and𝑋

𝑑
gates using the circuit shown in Figure 7.

This circuit can be simplified by noting down the equivalence
given by (10) and the simplified circuit is shown in Figure 8.

The qudit SWAP can be implemented with a circuit
consisting of three 𝐺𝑋𝑂𝑅 gates and two𝑋

𝑑
gates [14, 15] and
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Figure 1: Two-qubit gates. (a) CNOT; (b) SWAP.

|𝜙⟩

|𝜙⟩

|𝜓⟩

|𝜓⟩

Figure 2: Implementation of qubit SWAP using CNOT.

|𝜙⟩

|𝜙⟩|0⟩

|0⟩CX†

CX

Figure 3: Partial qudit SWAP circuit for one known input state. Note that a general dimension 𝑑 is assumed and for simplicity here we have
written 𝐶𝑋 and 𝐶𝑋† as well in the subsequent figures.
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Figure 4: Partial qudit SWAP circuit for one known input state using GXOR, 𝐶𝑋
𝑑
, and 𝐶𝑋†

𝑑
.

CXCX

CX|𝜙⟩

|𝜙⟩Xd

Xd Xd

|𝜓⟩

|𝜓⟩

Figure 5: Qudit SWAP circuit using 𝐶𝑋
𝑑
and𝑋

𝑑
gates.

CXGXOR

GXOR Xd|𝜙⟩

|𝜓⟩ |𝜙⟩
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Figure 6: Simplified version of the circuit in Figure 5.
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Xd|𝜙⟩

|𝜓⟩ |𝜙⟩

|𝜓⟩CX† CX

CX

†

Figure 7: Qudit SWAP circuit using 𝐶𝑋
𝑑
, 𝐶𝑋†
𝑑
, and𝑋

𝑑
gates.

GXOR

|𝜓⟩
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|𝜓⟩CX

CX

†

Figure 8: Simplified version of the circuit in Figure 7.
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Figure 9: Qudit SWAP circuit with 𝐺𝑋𝑂𝑅
𝑑
and𝑋

𝑑
gates.
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Figure 10: Simplified version of the circuit in Figure 9.
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Figure 11: Implementation of qudit SWAP using GXOR, 𝐶𝑋
𝑑
, and 𝐶𝑋†

𝑑
gates.
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Figure 12: Implementation of qudit SWAP using GXOR, 𝐶𝑋
𝑑
, and 𝐶𝑋†

𝑑
gates.
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Figure 13: Implementation of qudit SWAP using GXOR, 𝐶𝑋
𝑑
, and 𝐶𝑋†

𝑑
gates.
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the circuit is shown in Figure 9. Observing the equivalence
given by (9) in the circuit (see Figure 9), it is possible to
simplify the circuit as shown in Figure 10.

Apart from simplifying the previously proposed circuits,
the equivalence between the qudit gates can be employed
to introduce more qudit SWAP circuits. The qudit SWAP
can be constructed with three basic gates 𝐺𝑋𝑂𝑅, 𝐶𝑋

𝑑
, and

𝐶𝑋
†

𝑑
. The equivalence of SWAP operation is given by (18a)-

(18b) and corresponding circuit is shown in Figure 11. As the
circuit can implement SWAP for arbitrary input states, the
inverted circuit can also implement the same operation. By
cyclic rearrangement of 𝐺𝑋𝑂𝑅, 𝐶𝑋

𝑑
, and 𝐶𝑋†

𝑑
gates, more

circuit constructions are possible. Such circuits are shown in
Figures 12 and 13 and corresponding operation equivalence is
given by (19a)-(19b) and (20a)-(20b), respectively. Note that
circuit and its inverted version are given in Figures 11 to 13.
Consider the following:

𝐺𝑋𝑂𝑅
1,2
𝐶𝑋
𝑑2,1
𝐶𝑋
†

𝑑1,2
≡ SWAP, (18a)

𝐺𝑋𝑂𝑅
2,1
𝐶𝑋
𝑑1,2
𝐶𝑋
†

𝑑2,1
≡ SWAP, (18b)

𝐶𝑋
†

𝑑2,1
𝐺𝑋𝑂𝑅

1,2

𝐶𝑋
𝑑2,1
≡ SWAP, (19a)

𝐶𝑋
†

𝑑1,2
𝐺𝑋𝑂𝑅

2,1

𝐶𝑋
𝑑1,2
≡ SWAP, (19b)

𝐶𝑋
𝑑1,2
𝐶𝑋
†

𝑑2,1
𝐺𝑋𝑂𝑅

1,2

≡ SWAP, (20a)

𝐶𝑋
𝑑2,1
𝐶𝑋
†

𝑑1,2
𝐺𝑋𝑂𝑅

2,1

≡ SWAP. (20b)

Therefore the qudit 𝐺𝑋𝑂𝑅 gate can be combined with
𝐶𝑋
𝑑
and 𝐶𝑋†

𝑑
in a cyclic fashion to produce qudit SWAP

operation. It is known from previous results [7, 10, 14, 15] that
qudit SWAP operation is constructed with not less than four
gates. In thiswork, the possibility of constructing qudit SWAP
operation with three qudit gates is indicated. However, three
copies of 𝐶𝑋 gate are shown to be sufficient to achieve qudit
SWAP operation [11]. Note that 𝐶𝑋 gate can be decomposed
into two Quantum Fourier Transforms and a phase gate,
which can be realized for multilevel atoms [11, 16].

5. Conclusion

In this work, the existence of equivalence between various
qudit gates is illustrated and these gates are useful in the
construction of qudit SWAP circuit. The identification of
equivalence of the qudit operations is useful to minimize the
circuit complexity in the previously proposed qudit SWAP
gate constructions. In particular, the number of single qudit
gates is minimized in the qudit SWAP gate construction.
These constructions are useful whenever the single qudit
gates are difficult to implement in the experiment. Moreover,
many new qudit SWAP circuits comprising of lesser number
of gates are proposed. Notably, the proposed circuits have
the property of symmetry thereby the inverted circuits also
implement qudit SWAP operation. Hence, we argue that not
only the three copies of controlled qudit gate (𝐶𝑋

𝑑
) can

implement SWAP but also combinations of three different

versions of controlled qudit gates (𝐺𝑋𝑂𝑅,𝐶𝑋
𝑑
, and𝐶𝑋†

𝑑
) can

do the same. In short, we have presented various qudit circuits
which can be employed in the construction of complex qudit
circuits.
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