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Abstract: The productivity and quality in the turning process can be improved 

by utilizing the predicted performance of the cutting tools. This research 

incorporates condition monitoring of a non-carbide tool insert using vibration 

analysis along with machine learning and fuzzy logic approach.  A non-carbide 

tool insert is considered for the process of cutting operation in a semi-automatic 

lathe, where the condition of tool is monitored using vibration characteristics. 

The vibration signals for conditions such as heathy, damaged, thermal and flank 

were acquired with the help of piezoelectric transducer and data acquisition 

system. The descriptive statistical features were extracted from the acquired 

vibration signal using the feature extraction techniques. The extracted statistical 

features were selected using a feature selection process through J48 decision tree 

algorithm. The selected features were classified using J48 decision tree and fuzzy 

to develop the fault diagnosis model for the improved predictive analysis. The 

decision tree model produced the classification accuracy as 94.78% with five 

selected features. The developed fuzzy model produced the classification 

accuracy as 94.02% with five membership functions. Hence, the decision tree 

has been proposed as a suitable fault diagnosis model for predicting the tool 

insert health condition under different fault conditions. 

Keywords: Statistical features; J48 decision tree algorithm; confusion matrix; 

fuzzy logic; weka 

1 Introduction 

Tool wear during metal cutting operation is a cause of major concern in manufacturing industry, as it 

degrades the quality of product during manufacturing process and would also lead to economic losses for 

the manufacturing unit. It is important to monitor the condition of tool so as to re compensate the effect of 

tool wear on the machined components. It is therefore necessary to develop an accurate tool wear 

predictive models such as monitoring the condition of any tool during machining in order to improve the 

overall efficiency [1].  

The main goal of Condition monitoring is not only decreasing the manufacturing costs by reducing 

downtime and needless cutting tool changes, but also enhances the product quality by eliminating wear, 

excessive tool deflection and poor surface finish on its parts. There are two methods normally employed 

for tool wear sensing: Direct and Indirect methods. Direct method involves measuring the actual wear 

using optical devices such as radioactive analysis on the tool which is generally a quite difficult process 

[2]. The direct method is capable of providing higher accuracy only at certain conditions and has not been 

yet proven to be useful economically as well as technologically. Ryabov et al. used laser displacement 

sensor for online tool geometry in milling process [3]. Prasad et al. evaluated tool wear by using stereo 

vision technique [4]. Zuperl reported a real time tool condition monitoring system for milling tool [5]. 

Indirect method involves the use of single or multiple sensors by measuring the cutting forces, vibration, 

torques, temperature, acoustic emissions etc. Scheffer et al. reported a wear monitoring system in a 

turning operation using vibration signature and strain elements [6]. Vibration and acoustic emission (AE) 
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signals are the most widely used approaches in order to monitor the condition of rotating machines [7]. 

The faults can be detected by comparing the signals of a machine running in normal and faulty conditions. 

In this study, the vibration signals are used for the fault categorization. The vibration signals from the 

semi-automatic lathe will be non-stationary due to the wear and tear occurred during machining [8]. 

Alonso et al. studied the possibilities of vibration signature for monitoring the tool wear [9] Data 

modeling using machine learning approach are normally employed to solve such problems. 

Machine learning approach is one of the methods considered for obtaining the required features. The 

aim of machine learning is to give computer systems the ability to make predictions based on training 

data [10]. Machine learning approach involves three main steps, namely feature extraction, feature 

selection, and feature classification. There are several types of features such as statistical feature [11], 

histogram feature [12], wavelet features [13,14] have been successfully studied for the various fault 

diagnosis application. Balazinski et al. developed an Intelligent techniques for monitoring the tool 

condition [15] Gangadhar et al. classified the single point cutting tool condition in turning process using 

statistical features [16]. Sanithya et al. used statistical features for monitoring the single point cutting tool 

[17]. Madhusudana et al. used histogram features for monitoring the milling tool. Benkedjouh et al. 

predicted the milling tool condition using the continuous wavelet transforms (CWT) [18]. In all the above 

literature visual basic code was used for extracting the statistical features. In this study, the feature 

extraction process was carried out using MATLAB. The vibration signals obtained under all fault 

conditions were processed for extracting features. The following features namely, maximum, minimum, 

mean, median, standard deviation, kurtosis, skewness, sample variance, mode and standard error were 

extracted using MATLAB. 

After the feature extraction, the feature selection process was carried out. The most important 

features can be identified using any one of the algorithm such as fuzzy [18], Support vector machine [19], 

Decision Tree [11] and Principle component analysis [20]. Elangovan et al. used decision tree for 

selecting statistical features in the surface roughness prediction during turning [21]. Jegadeeshwaran et al. 

concluded that decision tree is a powerful tool for selecting the contributing features [11]. Many studies 

have been proved that the decision tree can be chosen as a powerful tool for feature selection. Hence, in 

this study features were selected using the decision tree algorithm.  

The immediate step after selection is feature classification. Feature classification is a process of 

categorizing the features using some internal calculations. There are many algorithms available for feature 

classification. The decision tree is one of the algorithm which can be suggested as a hybrid algorithm for 

both feature selection and feature classification for a bearing fault diagnostics study [22].  In a recent study, 

the best first tree was proposed as a best fault predicting model for the hydraulic brake system [11]. Support 

vector machines is one of the important classifiers which were successfully studied for the various 

applications such as misfire detection in IC engine [23], tool condition monitoring [24] and brake fault 

diagnosis [25], Navie bayes and bayes net [26]; k star [17]; proximal support vector machines [27] are the 

few algorithms that were used for various fault diagnosis applications. Among these, fuzzy is one of the 

technique which can be used for condition monitoring and fault diagnosis. Cuca et al. developed a fuzzy 

logic based tool condition monitoring for end milling [28]. Ren et al. developed a Type 2 fuzzy system for 

tool condition monitoring using the AE in micro milling [29]. However, there is a limited study on the tool 

condition monitoring using machine learning and fuzzy logic. In particular, the research content is almost nil 

for monitoring the condition of a carbide coated tool inserts using fuzzy. Hence in this study, an effort has 

been made for monitoring the tool condition using the decision tree and the fuzzy inference engine. The 

selected features were classified using the decision tree algorithm and the fuzzy model. The decision tree 

results were then compared with the results of the fuzzy model tool insert health prediction.  

The paper has been structured as follows: 

(i)    Section 2 shows the experimental study and the experimental procedure for acquiring the 

vibration signals under good and faulty conditions. 
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(ii)    Section 3 explains about machine learning approach which includes the feature extraction, 

feature selection and feature classification process 

(iii)    Section 4 demonstrates the result and discussion. Section 5 consists a concluding remarks.  

2 Experimental Study 

In this study, the vibration analysis has been used for predicting the tool condition using machine 

learning approach and fuzzy logic through an experimental study. A semi automatic late (ESTEEM & 

ETM356) was chosen for the machining process.  

 

Figure 1 (a): Experimental setup 

The carbide coated insert fitted tool was used for the machining process. A piezoelectric 

accelerometer was attached to the tool post to measure the vibrations produced by the tool for each of the 

conditions (Good, Bad (Broken), Flank wear and Thermal). Piezoelectric accelerometers are normally 

used for acquiring vibration signals due to its large frequency response.  

 

 Figure 1 (b): Sensor attached to the tool post 

The sensor used for the process is a piezoelectric accelerometer. In this study, the piezoelectric 

accelerometer (3055b1 Low Impedance Voltage mode (LIVM) manufactured by Dytron) was used for 

acquiring the vibration signals. The piezoelectric accelerometer was then connected to a signal 

conditioning unit where the signal is manipulated for the next stage for processing. Then these signals are 

acquired by using the DAQ module NI 9234.  
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Figure 2:  Data Acquisition Hardware-NI9234-4 Channel DAQ 

This DAQ card module consists of 4 analog input channels with a sampling rate of 50 kilo samples per 

second and a resolution of 24-bit). The signals were then processed using a computer with lab view software. 

These signals are recorded and the corresponding values are stored in excel sheets. Fig. 2 and Fig. 3 show 

the NI DAQ 9234 used for acquiring the vibration signals and an uni-axial accelerometer respectively.  

    

Figure 3: IEPE type Accelerometer 

 

Figure 4: Signal processing with LabVIEW 



SDHM, 2019, vol.13, no.3                                                                                                                         307 

 

The following parameters were used for conducting the experiments. 

Sample length  :  1024 (Arbitrarily chosen) 

Sampling frequency : 24 kHz (As per Nyquist sampling theorem) 

No. of samples  :  67 (Arbitrarily chosen) 

The experiment was conducted in two phases. In first phase, the insert was in a good condition. The 

vibration signals for each parameter were acquired while other two parameters are constant. The 

corresponding vibration signals were recorded. Under each set of parameters, the predictability of the 

classifier model was tested. The parameters under which the maximum accuracy was obtained were 

selected for the fault diagnosis study. In the fault diagnosis study, under each fault conditions, the relevant 

vibrations signals were acquired with the selected parameters in phase 1. The extracted vibration signal 

was processed using the machine learning approach. 

 Fig. 4 shows the sample LabVIEW program used for acquiring the vibration signals. Fig. 5 and Fig. 6 

shows the sample vibration signals acquired under good and faulty condition.  

 

Figure 5: Vibration signal acquired from the setup (S: 770 rpm; F0.135 mm; DOC: 0.8 mm) 

 

Figure 6: Vibration signal acquired from the setup (S: 770 rpm; F0.214 mm; DOC: 1.2 mm) 

The most frequently occurring fault conditions were then studied. They are flank wear, Thermal 

wear and broken condition [30] 

1)   Flank wear: It occurs as a result of friction between the machined surface of the work piece and 

the tool flank. Flank wear appears in the form of wear land and is measured by the width of this 

wear land. Flank wear affects to a great extend due to the mechanics of cutting. If the amount of 

flank wear exceeds a particular critical value (VB 0.5-0.6 mm), then excess cutting force will 

lead to tool wear. Fig. 7 shows the flank wear of the tool. 



308                                                                                                                         SDHM, 2019, vol.13, no.3 

 

Figure 7: Flank wear 

2)   Thermal cracks: It is the combination of temperature variations and mechanical shock that could 

possibly lead to thermal mechanical failure. Thermal mechanical failure is most frequently 

experienced on the edge and sometimes during interrupted-cut turning, facing operations on a 

large range of components and during operations with irregular fluid flow. Fig. 8 shows the 

thermal wear of the tool. 

3)   Broken edge: The mechanical fracturing of an insert happens once force overcomes the inherent 

strength of the leading edge. These kinds of faults are mechanically generated while finishing 

up the machining operation with high depth of cut. Fig. 9 shows the broken edge of the tool.   

 

Figure 8: Thermal wear 

 

Figure 9: Broken edge 
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3 Machine Learning Approach 

As discussed earlier, machine learning approach consists three basic steps: (i) Feature extraction; (ii) 

Feature Selection; (iii) Feature classification.  

3.1 Feature Extraction and Selection 

Feature extraction is a process of extracting informative and non-redundant data from set of large 

measured values. These features represent the data measured in a more informative way and are helpful in 

further analyzing of the required information. Certain statistical parameters such as kurtosis, skewness, 

variance, standard deviation, maximum value and minimum value were extracted from the acquired 

vibration signals. All the statistical parameters were calculated using the MATLAB code. Tab.1 shows 

the formula’s used for finding the statistical feature values. Tab. 2 shows the sample features extracted 

through MATLAB. 

Table 1: Statistical features Formula 

Name of 

Statistical 

Features 

Description/ Formula 

Standard 
Error 

 

Standard 

Deviation  

Sample 

Variance  

Kurtosis 

Skewness 

 

Maximum 

value 

 

Maximum signal point value in a given signal 

Minimum 

value 

 

Minimum signal point value in a given signal 

Range Difference in maximum and minimum signal point values 

for a given signal 

Sum Sum of all feature values for each sample 

Mean The arithmetic average of a set of values or distribution 

Median Middle value separating the greater and lesser halves of a 

data set 

 

 



310                                                                                                                         SDHM, 2019, vol.13, no.3 

Table 2: Statistical features 

Maximum Minimum 

Standard 

Deviation Kurtosis Skewness Condition 

1.935 0.0096 0.302 336.17 -17.34 Good  

1.925 0.0040 0.128 506.51 -21.22 Good 

3.754 0.0497 -0.406 -435.90 -7.18 Good 

1.599 0.1048 2.146 447.27 -12.48 Flank wear 

1.804 0.0816 -0.286 164.93 -14.99 Flank wear 

1.984 0.0293 1.285 880.38 -36.36 Flank wear 

1.868 0.0186 2.759 425.10 -13.83 Thermal wear 

1.698 0.1248 -0.554 161.64 -7.54 Thermal wear 

1.844 0.0325 1.040 270.58 -15.03 Thermal wear 

1.886 0.0086 0.275 396.02 -18.36 Broken  

1.599 0.1048 2.146 447.27 -12.04 Broken 

1.868 0.0186 2.759 425.10 -13.83 Broken 

Twelve statistical features were extracted from the raw vibration signatures. All the features may not 

be essential for the classification process. The process of selecting contributing features is called as 

feature selection. The feature selection process was carried out using J48 decision tree algorithm. 

Extracted features were the input to the algorithm. The output is a form of a graphical tree known as 

decision tree. From the decision tree, five features that have contributed for classification were only 

selected for training and testing. They are: (1) Maximum (2) Standard deviation (3) Minimum value, (4) 

Kurtosis and (5) Skewness. The selected features were classified using J48 decision tree algorithm and 

fuzzy classifier.  

3.2 Feature Classification 

Grouping is allotting the classification to new arrangement of perceptions by contrasting and the 

effectively settled information set whose class enrollment is known. Order wording is separated into two 

directed and unsupervised. The unsupervised system is likewise called grouping. A calculation that 

actualizes the arrangement is called classifier. The J48 decision tree classifier and Fuzzy classifiers have 

been used here. 

3.2.1 Feature Classification Using J48 Decision Tree 

A decision tree is a tree based learning representation philosophy used to speak to characterization 

rules. Choice tree learning is a standout amongst the most prevalent learning approaches in grouping 

since it is quick and produces models with great execution. For the most part, decision tree algorithm are 

particularly useful for order learning if the preparation cases have blunders (i.e., loud information) and 

properties have missing qualities. A decision tree is a game plan of tests on traits in inward nodes and 

every test prompts to the split of a node. Every terminal node is then appointed an order. A standard tree 

prompted with c5.0 (or perhaps ID3 or c4.5) comprises of various branches, one root, various nodes and 

various clears out. One branch is a chain of nodes from root to a leaf; and every node includes one 

characteristic. The event of a quality in a tree gives the data about the significance of the related. A 

decision tree is a tree based information representation philosophy used to speak to arrangement rules. 

J48 algorithm is a broadly utilized one to develop decision trees. The technique of framing the Decision 

Tree and abusing the same for highlight determination is described by the accompanying:  

(i) The chose set of measurable elements is given as contribution to the algorithm; the yield from the 

algorithm is the choice tree.  
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(ii) The decision tree has leaf nodes which speak to class names and different nodes connected with 

the classes being characterized.  

(iii) The branches of the tree represents to every conceivable estimation of the element node from  

which they begin.  

(iv) The decision tree can be utilized to group highlight vectors by beginning at the base of the tree and 

traveling through it until a leaf node which gives an arrangement of the occasion is recognized. 

 

Figure 10: Decision tree 

3.2.2 Feature Classification Using Fuzzy Model 

Fuzzy classification is the process of grouping the statistical features as input variable and 

classification accuracy as output variable depending upon range of variables. From the decision tree as 

shown in Fig. 10, eleven rules were generated.  

The member ship functions were created for the each contributing features. The trapezoidal 

membership function was used in the fuzzy tool box. Fig. 11-Fig. 15 show the membership function for 

the input features minimum, kurtosis, skewness, standard deviation and median respectively. The output 

variable is the condition and its membership function are also shown in Fig. 16.  
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Figure 11: Membership function-Kurtosis 

 

Figure 12: Membership function-Median 

 

Figure 13: Membership function-Minimum 

 

Figure 14: Membership function-Standard Deviation 
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Figure 15: Membership function-Skewness 

Output Variables: 

 

Figure 16: Membership function-Condition of the tool 

4 Results and Discussion 

In this study, the carbide coated tool insert condition monitoring was carried out. Under different 

machining conditions, the vibration signals were acquired. Eleven statistical parameters namely standard 

error, sample variance, kurtosis, skewness, standard deviation, minimum, maximum, mean, median, range 

and sum were extracted from the acquired vibration signals. All the eleven features may not be needed for 

the classification. Hence, important features alone were selected using the decision tree algorithm. Five 

parameters namely, minimum, standard deviation, maximum, kurtosis and skewness were identified as 

leading contributors amongst the features that were extracted. 

4.1 Classification Accuracy Using J48 Decision Tree 

The selected features were classified using the decision tree algorithm. The selected features are the 

input to the algorithm. The output is the classification accuracy. The classification accuracy has been 

presented in the form confusion matrix as shown in Tab. 3. The confusion matrix is a square matrix in 

which the summary of the classification accuracy can be found. The diagonal elements in the confusion 

matrix are the correctly classified data points and the nondiagonal elements are misclassified data points.   

In the confusion matrix, first, row represents the data points belong to the good condition. The first 

element in the first column belongs to its classified state. Out of 67 data points, 66 were correctly 

classified as Good. One data has been misclassified as Thermal wear. The second row represents Flank. 

The second element in the second column is a number of data points that are correctly classified. Out of 

69 data points, 64 data points were correctly classified. The three data points were misclassified as 

thermal wear. As discussed above the classification and the misclassification details can be studied using 

the confusion matrix.  
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Table 3: Confusion matrix 

Prediction/Condition Good Thermal Flank Bad 

Good 66 0 1 0 

Flank 0 64 0 3 

Thermal 1 2 62 2 

Bad 0 1 4 62 

Among the 268 data points belong to all fault conditions, 14 data points were misclassified. 

Referring the confusion matrix, none of the fault conditions have been misclassified as good condition. 

Hence J48 can be used for the fault related study. 

 

Classification Summary 

  Total number of data points    : 268 

  Number of data points that were correctly classified : 254 

  No. of data points that were mis classified  : 14 

  Overall classification accuracy    : 94.78% 

4.2 Classification Accuracy Using Fuzzy Classification 

Fuzzy classification is the process of grouping elements into a fuzzy set whose membership function 

is defined by the truth value of a fuzzy propositional function. To be precise, a class is a set that is defined 

by a certain property, and all objects having that property are elements of that class. This process of 

classification evaluates for a given set of objects whether they fulfill the classification property, and 

consequentially are a member of the corresponding class. However, this intuitive concept has some 

logical subtleties that need clarification. Here for fuzzy classification we will be taking the all the five 

parameters and making them in to input variables with trapezoidal membership function based on the 

rules generated from the decision tree. The output variables will be the conditions good, bad (broken), 

flank and thermal with triangular membership functions. The rules for the fuzzy classification will be 

framed after analyzing the rules from decision tree. 

Table 4: Confusion matrix  

Prediction/Condition Good Thermal Flank Bad 

Good 66 0 1 0 

Flank 0 63 2 2 

Thermal 0 1 62 4 

Bad 1 3 2 61 

A confusion matrix is a table that is often used to describe the performance of a classification model 

(classifier) on a set of test data for which the true values are known. The confusion matrix itself is 

relatively simple to understand, but the related terminology can be confusing. For good condition the 

correctly classified instances are 66 and misclassified is one. For bad condition the correctly classified 

instances are 61 and misclassified is six. For Flank condition the correctly classified instances are 63 and 

misclassified is four. For Thermal condition the correctly classified instances are 62 and misclassified is 

five. Thus, for each condition we get an accuracy of 98.57%, 91.42%, 94.28%, and 92.85%. 

Classification Summary 

Total number of data points    : 268 
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Number of data points that were correctly classified   : 252 

No. of data points that were misclassified               : 16 

Overall classification accuracy    : 94.02% 

By comparing decision tree and fuzzy classifiers, the decision tree produced the maximum 

classification accuracy as 94.78%. Hence, decision tree outperforms the fuzzy set and it can be suggested 

for the tool insert health prediction.  

5 Conclusions 

In this study, the J48 decision tree algorithm and fuzzy logic was used as classifier for classifying the 

conditions using the statistical features calculated from the vibration signals of the non-carbide tool 

(Tungsten carbide) used in turning operation. The accuracy of J48 decision tree classifier was found to be 

94.78%. Fuzzy logic classifier was used to classify the statistical features further and the accuracy of the 

classification was found out to be 94.02%. Thus we can see that, although the classification accuracy of 

the J48 decision tree is similar to fuzzy logic classifier we can see that the decision tree classifier holds a 

slightly upper hand. This system provides a possible application to improve the accuracy and precision of 

condition monitoring system. It also informs the machine operator of any faults detected. This will 

significantly reduce the damage be it major or minor to the machine as well as the tool and thus 

increasing the overall efficiency. 
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