
Whole Genome Comparison on a Network of Workstations

Arpith Jacob
Vellore Institute of Technology, Vellore, India

arpith@arpith.com

Sugata Sanyal
Tata Institute of Fundamental Research, Mumbai, India

sanyal@tifr.res.in

Marcin Paprzycki
SWPS and IBS PAN, Warsaw, Poland

marcin.paprzycki@ibspan.waw.pl

Rajan Arora
Rajan Arora Indian Institute of Information Technology, Allahabad, India

arorarajan@gmail.com

Maria Ganzha
EUH-E, Elbląg and IBS PAN, Warsaw, Poland

ganzha@euh-e.edu.pl

Abstract
Whole genome comparison consists of comparing

or aligning genome sequences with a goal of finding
similarities between them. Previously we have shown
how SIMD Extensions used in Intel processors can
be used to efficiently implement the, genome com-
paring, Smith-Waterman algorithm. Here we present
distributed version of that algorithm. We show that
on somewhat outdated hardware we can achieve
speeds upwards of 8000 MCUPS; one of the fastest
implementations of the Smith-Waterman algorithm.

1. Introduction

Genome sequence similarity searches are often uti-
lized in Computational Biology. Their goal is to iden-
tify closely related genomic sequences assuming that
high degree of similarity in genome sequences may im-
ply similarity of functional or structural characteristics.
In computational practice, an alignment score between
the query sequence and sequences in a database are cal-
culated to assess similarity. One of popular algorithms

to compare genomic sequences is the Smith-Waterman
algorithm and our goal is to show how it can be
efficiently implemented on a network of workstations.

In our earlier work ([1]) we have described how
utilization of Intel’s MMX/SSE2 instruction set speeds-
up the Smith-Waterman algorithm on a single processor.
Results of our experiments, preformed on a Pentium III
running at 500 MHz and a Pentium 4 running at 1.4
GHz showed speedup of the order 10-62 over a sequen-
tial algorithm (see [1] for a complete description of the
proposed approach and summary of obtained results).

In this paper we describe a coarse-grained ap-
proach to parallelization of the Smith-Waterman algo-
rithm (which utilizes also our SIMD-based algorithm).
We follow earlier research of Strumpen ([3]) who used
a massively parallel approach to distribute the database
search process in a heterogeneous environment on more
than 800 workstations on the the Internet. Separately,
Martins and associates ([4]) described an event-driven
multithreaded implementation of the sequence align-
ment algorithm for the EARTH architecture, on a Be-
owulf cluster of 128 Pentium Pro microprocessors.

We proceed as follows. In the next section we

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

summarize the Smith-Waterman algorithm. We follow
with the description of our coarse-grained approach and
present results of experiments on 64 workstations.

2. The Smith-Waterman algorithm

Initially, Needleman and Wunsch [5] and Sell-
ers [6] introduced the global alignment algorithm based
on the dynamic programming approach. Smith and
Waterman [7] proposed an O(M2N) algorithm to iden-
tify common molecular subsequences, which took into
account evolutionary insertions and deletions. Later,
Gotoh [8] modified this algorithm to run at O(MN) by
considering affine gap penalties. Each of these algo-
rithms depended on saving the entire M ×N matrix in
order to recover the alignment. The large space require-
ment problem was solved by Myers and Miller [9] who
presented a quadratic time and linear space algorithm,
based on a divide and conquer approach. Finally, Aho,
Hirschberg and Ullman [10] proved that comparison
algorithms that compare symbols to see if they are
equal or unequal, have to take time proportional to the
product of their string lengths. Let us now describe

T C G A C A T A

A

C

G

G

A

T

C

A

0 0 0 1 5 0 12 5 5
0 0 5 0 1 7 0 0 0

0 0 0 5 2 0 0 0 0

0 0 0 6 0 2 1 4 6

0 0 1 0 6 0 8 2 13

0 5 0 1 0 3 6 8 1

0 0 5 0 0 10 3 1 0

0 0 0 0 5 0 5 0 5

0 0 0 0 0 0 0 0 0

Figure 1. Comparison Matrix: Optimal score:
13, Match: 5, Mismatch: -4, Penalty: 0 + 7k.
Optimal Alignment: A C A T A, A C - T A

the Smith-Waterman algorithm (an example of its
operation was depicted in Figure 1; more details can be
found in [1]). Let us consider two genomic sequences
A and B of length M and N respectively, that are to
be compared using a substitution matrix ¶. Here, we
utilize the affine gap weight model. The gap penalty
is given by: Wi + kWe where Wi > 0 and We > 0. Wi is
the penalty for initiating the gap and We is the penalty
for extension of the gap, which varies linearly on the
length of the gap. The substitution matrix ¶ lists the
probabilities of change from one nucleotide or amino
acid into another in the sequence. There are two
families of matrices used in the algorithm: the Percent

Accepted Mutation (PAM) and the Block Substitution
Matrices (BLOSUM). A maximization relation is used
in order to calculate the optimum local alignment score
according to the following recurrence relations (the
highest value in the H matrix gives the optimal score):

E(i, j) = H(i, j) = F(i, j) = 0, for i = 0 or j = 0

E(i, j) = max

{

E(i−1, j)−We

H(i−1, j)−Wi−We

}

F(i, j) = max

{

F(i, j−1)−We

H(i, j−1)−Wi−We

}

H(i, j) = max

0
E(i, j)
F(i, j)

H(i−1, j−1)+ ¶(Ai,B j)

Recurrences can be understood as follows: the E
(F) matrix holds the score of an alignment that ends
with a gap in sequence A (B). When calculating the
E(i, j)th (F(i, j)th) value, both extending an existing
gap by one space, or initiating a completely new gap
is considered. The H(i, j)th cell value holds the best
score of a local alignment that ends at position Ai,
B j. Hence, alignments with gaps in either sequence,
or the possibility of increasing the alignment with a
matched or mismatched pair are considered. A zero
term is added in order to discard negatively scoring
alignments and restart the local alignment. One of
possible many optimal alignments can be retrieved by
retracing steps taken during the H matrix computation,
from the optimal score back to the zero term.

3. Coarse-grained parallelization

Let us now assume that we apply the algorithm
proposed in [1] and estimate that on todays PC’s it
would be possible to obtain speed of order of 1000
MCUPS. Such speed is still insufficient for searching
large databases and thus to obtain higher MCUPS rate
we may harness power of a network of workstations.
Specifically, in this work, we are interested in paral-
lelizing database search using the Smith-Waterman al-
gorithm on a LAN, containing dedicated workstations.

3.1. Distributed Smith-Waterman algorithm

The proposed distributed approach is a variant of a
master-slave approach and consists of a master, an FTP
server and a number of workers, connected by a net-
work (Figure 2). The master divides the database se-
quences into as many buckets as the number of workers
and uploads them onto the FTP server, which facilitates

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

data exchange between the master and the workers. Let
us now describe elements found in Figure 2.

Figure 2. Distributed Smith-Waterman algo-
rithm

1. Master Process: is started by furnishing it with the
information about genomes (the query sequence
and the database sequence sets) to be compared,
the substitution scores and the gap penalty to be
used, the URL and path to the FTP server, and the
number of workers. It divides the database into
equal sized buckets using the bucket workload bal-
ancing technique, and uploads them to the FTP
server. The query sequence set is uploaded without
splitting.

The master process contains three threads: con-
trol, reception and communication. The control
thread is the main interface between the user and
the distributed database search system. It responds
to user commands, updates the display and keeps
track of the amount of work left for the individ-
ual workers. The reception thread acts as the ren-
dezvous point between the master and the workers.
After establishing connection and the initial hand-
shake, a new worker is assigned a particular bucket
to search. The communication thread is the chan-
nel for communication between the master and a
worker. Status information is streamed at regular
intervals (set by the user) from the worker to the
master. The master uses this information to up-
date a running display of work completed, and the
speed of the distributed system. Upon completion
of work, the control thread downloads the compar-
ison scores from the FTP server and collates the
data into a single result file. The collation process
is a time consuming task as the scores from the dif-
ferent workers have to be assembled in the original
order of the database.

2. Data Exchange Server: is used to handle data ex-
change between the master and workers. Since the
master can be expected to be lightly loaded, no
matter the number of workers, and the FTP server
is loaded only at the start and completion of the
search process, both can be run on the same work-
station.

3. Worker Processes: run on separate workstations.
Worker process contains two threads: control and
computation. The control thread communicates
with the master. It gets the search parameters,
downloads its bucket file and query sequence, up-
dates the master on the progress of work and up-
loads results. The computation thread executes the
Smith-Waterman algorithm.

3.2. Load Balancing

Success of the coarse-grained approach depends on
the load balancing strategy. A slightly modified ver-
sion of the bucket method suggested by Yap, Frieder and
Martino ([14]) which is a combination of the static allo-
cation portion method and dynamic allocation master-
worker method is utilized here (though in the future we
plan to experiment with dynamic allocation methods).
Yap defines the percentage of load imbalance (PLIB)
as the time difference between the fastest finishing and
slowest finishing workstations. A good workload bal-
ancing technique must have a PLIB close to zero.

The bucket method proceeds as follows. Sequences
in the database are sorted in descending length order.
Starting from the longest sequence, each one is placed
into a bucket that has the smallest value for the function:
tb = (å nb)/MCUPS where å nb is the current sum of
sequence lengths in the bucket, and MCUPS is the speed
of the workstation to which the bucket is assigned (thus
taking into account the heterogeneity of workstations).
Because work is divided before computation begins, the
number of workstations and their speeds of comparison
must be known in advance.

Note that in practice the performance of the load
balancing technique depends also on the composition of
the sequences in the genome. The number of high scor-
ing sequences in a bucket affects the number of reeval-
uations performed with the word implementation of the
comparison algorithm. It is difficult to determine in ad-
vance the sequences that will have a comparison score
above the saturation level of the byte implementation,
but in general longer sequences have a higher probabil-
ity of generating larger scores. The bucket method takes
this into consideration by first sorting the database se-
quences in descending order before allocation.

Another potential problem is the degradation of this

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

scheme due to faulty workstations. If even a single
workstation process fails, time for database comparison
doubles as the corresponding bucket can only be allo-
cated to another workstation once it completes its work
(PLIB becomes 50%).

3.3. Implementation Details

Mithral client-server software development kit [15]
(providing TCP/IP connections, thread control and file
system functions) was used to build the distributed sys-
tem. The libcurl [16] library compiled as a DLL was
used to provide file transfer support for the FTP proto-
col. The code was written in C and assembler, and com-
piled in Visual C/C++ 6.0 and the Netwide ASeMbler
0.98.08 (NASM) on Windows NT. The system was used
for whole genome comparison, where one set of anno-
tated sequences of an organism was compared against
another. A metadata file was created, containing the
bucket number in which each sequence of that genome
was placed. It was used to collate the generated scores
into a single file (representing the original order within
the genome). Proposed system was equipped with ba-
sic facilities to overcome worker failures. Intermit-
tent faults caused by network connectivity problems or
heavy load of a worker are detected upon its failure
to report status information to the master. Permanent
faults caused by the termination of a worker process,
result in loss of work done by that worker. The system
then reassigns the bucket to a new worker when one be-
comes available. Based on the results reported in [1],
the diagonal method was used as the most efficient and
accurate. Since our implementation was run on a net-
work of homogeneous workstations, the pure homoge-
neous metric was used for the load balancing algorithm.

To quantify the performance of dynamic program-
ming algorithms, the measure: millions of dynamic pro-
gramming cell updates per second (MCUPS) was de-
fined. It represents the number of cells in the H matrix
that can be computed per second, and includes all mem-
ory operations and corresponding E and F matrix cell
evaluations. It is calculated as (MN)/td p/106 where td p

is the time (in seconds), to evaluate the entire H matrix
and return the optimal score.

3.4. Experimental Results

The experiments were carried out on 64 Windows
NT workstations. A separate Windows workstation was
used to run the master process and a workstation run-
ning Redhat Linux was used to run the FTP server. Each
worker node had a single Pentium 4 processor running
at 1.4Ghz and 128 Mbytes of RAM. The interconnec-

tion network was a switched 100Mbps Ethernet.
The first experiment was the whole genome com-

parison of the annotated Bacillus Subtilis 168 genome
(4100 DNA sequences; 3,650,998 nucleotides) with
the Mycoplasma Genitalium G-37 genome (484 DNA
sequences; 528,750 nucleotides). A total of 1,370,339
(69%) pairwise comparisons produced scores below
the byte saturation level, while 614,061 (31%) pairwise
comparisons had to be reevaluated with the word
implementation. The second experiment was the whole
genome comparison of the annotated Escherichia
coli k-12 genome (4405 DNA sequences; 4,130,746
nucleotides) with the Haemophilus influenzae genome
(1739 DNA sequences; 1,610,500 nucleotides). A total
of 1,529,612 (77%) pairwise comparisons produced
scores below the byte saturation level, while 454,788
(23%) pairwise comparisons had to be reevaluated with
the word implementation.

Table 1. Experiment 1: Performance of
bucket load balancing algorithm.

Work-
stations

Largest Load
(nucleotides)

Smallest Load
(nucleotides) PLIB

2 1825501 1825497 0.000219
4 912759 912744 0.001643
8 456402 456348 0.011832

16 228231 228132 0.043377
32 114120 114003 0.102524

Table 2. Experiment 2: Performance of
bucket load balancing algorithm.

Work-
stations

Largest Load
(nucleotides)

Smallest Load
(nucleotides) PLIB

16 100691 100593 0.097327
32 50388 50286 0.202429
48 33630 33516 0.338983
64 25233 25116 0.463679

In Tables 1, 2 we quantify the performance of the
bucket load balancing technique by displaying the size
of the largest and the smallest buckets and the PLIB
value. As we can see the bucket technique turns out to
be quite efficient as the difference between the largest
and the smallest load is at most about hundred nu-
cleotides (PLIB is close to zero) for all experiments.

Figure 3 shows the speedup of the distributed
algorithm. Overall, an almost linear speedup was
observed and it can be attributed to the independence
of the workers, homogeneity of worker computers and
appropriateness of the load balancing technique. In
Tables 3 and 4 we show performance of the two exper-

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

Figure 3. Speedup for the comparison of B.
Subtilis versus M. Genitalium.

Work
stations

Runtime
(sec.)

Max
MCUPS

Average
MCUPS

MCUPS/
Work
station

1 11337 170 170 170
2 5569 350 347 173
4 2842 708 679 170
8 1444 1400 1337 167

16 745 2730 2591 162
32 396 5343 4875 152

Table 3. Experiment 1: performance of compar-
ing Bacilus Subtilis with Mycoplasma Genital-
ium

iments. Maximum MCUPS represents the maximum
instantaneous speed of the system, while the Average
MCUPS indicates the average speed of computation.
The value of MCUPS / WORKSTATION measures
worker efficiency. Experiment 1 produces excellent
results for tests performed on up to 32 workstations.
Experiment 2 compares genomes that are much larger
and is substantially more time consuming. It produces
good speeds for up to 32 machines after which there
is a significant drop in performance growth. There are
many reasons for this effect. First, a large number of
workstations connecting simultaneously to the FTP
server cause network congestion and overload the FTP
server. A simple workaround could be to start groups of
workers at different intervals of time. Second, there is a
small overhead for splitting the genome into buckets at
the beginning of the computation. This is typically in
the order of 60 seconds and increases with the number
of workstations used. However, the most important

Work
stations

Runtime
(seconds)

Max
MCUPS

Average
MCUPS

MCUPS/
Work
station

16 2472 2886 2691 168
32 1311 5639 5074 159
48 1358 7090 4899 102
64 1233 8076 5395 84

Table 4. Experiment 2: performance of compar-
ing Haemophilus Influenzae with Escherichia
coli

reason for the performance drop is the time taken in
collating the output produced by the different workers
into a single result file. This time is in the order of up to
300 seconds for 64 workers, and significantly decreases
the performance of the distributed system. Overall,
maximum speed of 8076 MCUPS was achieved on
64 workstations, a speedup of approximately 2.8
when compared to 16 workstations. Finally, Table 5

Systems Type PEs MCUPS
Cost
(k$)

BioSCAN SP 12992 25000 20
64 P4’s WC 64 8076 68
BISP SP 256 3200 20
Kestrel PC 1024 1600 30
DeCypher II-15 RH 1920 1400 173
SAMBA SP 128 730 60

PC—programmable co-processor,

RH—reconfigurable hardware,

WC—network of workstations,

SP—Special Purpose VLSI.

Table 5. Performance of various hardware plat-
forms according to [2] and our system

compares the performance of genomic comparisons
on various hardware. System described in this paper,
stands second only to the special purpose hardware
solution, BioSCAN. The price-tag of our approach is a
misnomer since in most institutions a large number of
workstations are already available and can be used with
little additional cost. Note also, that our experiments
have been performed on a somewhat outdated hardware
(which was the only hardware we had easy access to at
the time). The performance of the more modern Pen-
tium 4 processors (even these without hyper-threading
technology) should allow running the Smith-Waterman
algorithm at double the speed reported here.

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

3.5. Limitations

It is worthwhile discussing some of the limitations
and problems that we have encountered. As mentioned
before, the FTP server and the interconnecting network
must be capable of simultaneously servicing a large
number of clients. The FTP server is a bottleneck dur-
ing the beginning and end of the computation. One of
the ways this problem can be alleviated is by starting
the clients in different batches, so that the load on the
FTP server is reduced. A potential problem is in the
availability of a large number of machines as PCs in
a general laboratory are used by numerous people at
varying times. Strategic time intervals when there is
less demand must be targeted. Another practical prob-
lem encountered was the failure of the power supply
source. Because sequence comparison is a CPU inten-
sive task, distributed computing on a workstation cluster
increases the power consumption of the CPUs and can
heavily load the power supply.

4. Concluding remarks

The aim of this work was to test the feasibil-
ity of using a network of workstations for compar-
ing whole genome sequences. The proposed coarse-
parallelization approach directly utilized an earlier de-
veloped SIMD approach based on multimedia exten-
sions of modern Intel processors. As a result of com-
bining fine and coarse grain parallelization we ob-
served performance comparable to the fastest imple-
mentations of whole genome comparisons on special
purpose hardware. Since general-purpose processors
with improved performance are constantly being de-
veloped, further performance boost can be expected.
For instance, the newly introduced Simultaneous Multi-
threading (hyper-threading) technology available on
Pentium 4 microprocessors, or the multi-core approach
to processor design offered by both Intel and AMD of-
fers further potential speed increases. In the near future
we plan to proceed in two directions. First, investigate
effectiveness of dynamic load balancing strategies when
applied to our problem. Second, to port the distributed
Smith-Waterman algorithm to the grid. We will report
on the results in subsequent reports.

Acknowledgments

We thank the manager of Centre for Technical Sup-
port at T. S. Santhanam Computing Centre, Muthu‘G.,
and the laboratory personnel Mr. Ravikumar V. (GA),
Mr. Elson Jeeva T. (MIS), Mr. Srinivasan V. and
Ms Dharani (ME) for providing equipment required to

conduct experiments.

References

[1] A. Jacob, M. Paprzycki, S. Sanyal, Whole Genome Com-
parison using Commodity Hardware, Technical Report,
http://www.tifr.res.in/~sanyal/papers/
techreport_2007_1.pdf, submitted

[2] R. Hughey, “Parallel hardware for sequence compari-
son and alignment,” Computer Applications in the Bio-
sciences, 12(6): 473–479, 1996

[3] V. Strumpen, “Parallel molecular sequence analysis on
workstations in the Internet,” Technical report, Depart-
ment of computer science, University of Zurich, 1993

[4] W. S. Martins, J. B. del Cuvillo, F. J. Useche, K. B.
Theobald, G. R. Gao, “A multithreaded parallel imple-
mentation of a dynamic programming algorithm for se-
quence comparison,” In Proc. of the Pacific Symposium
on Biocomputing, 311–322, 2001

[5] S. B. Needleman, C. D. Wunsch, “A general method ap-
plicable to the search for similarities in the amino acid se-
quence of two sequences,” J. of Molecular Biology, 48(3):
443–453, 1970

[6] P. H. Sellers, “On the theory and computation of evolu-
tionary distances,” SIAM J. of Applied Mathematics, 26:
787–793, 1974

[7] T. F. Smith, M. S. Waterman, “Identification of com-
mon molecular subsequences,” J. of Molecular Biology,
147(1): 195–197, 1981

[8] O. Gotoh, “An improved algorithm for matching biolog-
ical sequences,” J. of Molecular Biology, 162(3): 705–
708, 1982

[9] E. W. Myers, W. Miller, “Optimal alignments in linear
space,” Comp. App. in the Biosciences, 4(1): 11–17,
1988

[10] A. V. Aho, D.S. Hirschberg, J. D. Ullman, “Bounds on
the complexity of the longest common subsequence prob-
lem,” J. of the ACM, 23(1): 1–12, 1976

[11] R. B. Lee, “Multimedia extensions for general-purpose
processors,” Proc. IEEE Workshop on Signal Processing
Systems, 9–23, 1997

[12] A. Peleg, S. Wilkie, U. Weiser, “Intel MMX for multi-
media PCs,” CACM, 40(1):25–38, 1997

[13] Berkeley Drosophila Genome Project, 2003. Available:
http://www.fruitfly.org/

[14] T. K. Yap, O. Frieder, R. L. Martino, “Parallel compu-
tation in biological sequence analysis,” IEEE Trans. on
Para. and Dist. Syst., 9(3):283–293, 1998

[15] Mithral cssdk, 2003. Available:
http://www.mithral.com/projects/cosm/

[16] Libcurl, 2003. Available:http://curl.sf.net/
[17] A. Di Blas, D. M. Dahle, M. Diekhans, L. Grate, J.

D. Hirschberg, K. Karplus, H. Keller, M. Kendrick, F. J.
Mesa-Martinez, D. Pease, E. Rice, A. Schultz, D. Speck,
R. Hughey, “The UCSC Kestrel Parallel Processor,” IEEE
Trans. on Para. and Dist. Syst., 16(1): 80–92, 2005

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

