Header menu link for other important links
X
Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications
Kandasamy S, Narayanan V,
Published in Elsevier BV
2020
PMID: 31726129
Volume: 145
   
Pages: 1018 - 1030
Abstract
Zn-Mn HAP (Zinc and Manganese substituted Hydroxyapatite), CMC (Carboxymethyl cellulose)/PVP (Polyvinyl pyrrolidone) and (Zn-Mn HAP)/CMC/PVP (Zn = Mn = 0.05, 0.1 M) were prepared by hydrothermal and electrospinning methods respectively. The prepared composites were characterized using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDAX) to examine the phase formation, functional groups and surface morphology. FTIR spectra of the composite confirmed the funcitonal groups present in the composite. SEM images showed the fiber formation and the incorporation of Zn-Mn HAP into the fiber structures. The physical properties like porosity, swelling and tensile strength was studied for the prepared composites. 0.1 M of (Zn-Mn HAP)/CMC/PVP (20, 40, 60 wt% of Zn-Mn HAP composite) showed good physical properties, in which the 60 wt% showed 98% of porosity with least swelling and the tensile strength was measured to be 67 MPa. Highest zone of inhibition was observed against the microbial organisms using this 60 wt% of 0.1 M of (Zn-Mn HAP)/CMC/PVP composite and it was also found to be hemocompatible with hemolysis value less than 3% when compared to other composites. The biocompatibility of the composite was evaluated using human osteoblast cells (HOS). © 2019 Elsevier B.V.
About the journal
JournalData powered by TypesetInternational Journal of Biological Macromolecules
PublisherData powered by TypesetElsevier BV
ISSN0141-8130
Open Access0