Header menu link for other important links
X
Bond-Energy-Driven, Low- or High-Angle-Grain-Boundary-Movement-Mediated Synthesis of Porous Se-Te for Use in Water-Splitting Reactions
A.K. Sasmal, , P. Kartikeya, D. Pradhan, T. Pal
Published in American Chemical Society
2017
PMID: 29148703
Volume: 9
   
Issue: 48
Pages: 41818 - 41826
Abstract
Herein, for the first time, we applied the metal-metal-bond-energy factor to the evolution of a porous Se-Te alloy. The porous Se-Te material has been prepared from the constituents' elemental states, through only a heating-cooling process in silicone oil without the use of any reagent, surfactant, or capping agent. Surprisingly, the reaction occurred at a much lower temperature (240 °C) than the mp (450 °C) of Te0. The reaction's nucleation and growth by means of varied bond energy have been clarified for the first time. A difference in the bond energies of a hetero metal-metal bond (Se-Te) and a homo metal-metal bond (Se-Se) directs nucleation and growth toward the fabrication of a porous structure, even from the constituents' elemental states, in which low-angle-grain-boundary (LAGB) and high-angle-grain-boundary (HAGB) movements play governing roles. Proper band-gap alignment of Se and Te makes the alloy composite applicable to water-splitting reactions under Xe-arc-lamp illumination. PEC efficiency of Se-Te was found to be higher than those reported for Se and other composite materials. © 2017 American Chemical Society.
About the journal
JournalData powered by TypesetACS Applied Materials and Interfaces
PublisherData powered by TypesetAmerican Chemical Society
ISSN19448244