Header menu link for other important links
X
Influence of Co-substitution on the structural and magnetic properties of nanocrystalline Ba0.5Sr0.5Fe12O19
, Harikrishnan V, Saravanan P,
Published in Elsevier BV
2016
Volume: 452
   
Pages: 117 - 124
Abstract
One-step citrate gel combustion method followed by annealing (800 °C/2 h) was employed to synthesize cobalt substituted barium strontium hexaferrite with a chemical composition of Ba0.5Sr0.5Fe12−xCoxO19 (x=0, 0.5, 0.7, and 0.9). A combination of thermo-gravimetric analysis and differential scanning calorimetry was employed to understand the thermo-chemical behavior of Ba0.5Sr0.5Fe12O19. X-ray diffraction (XRD) was used to evaluate the hexagonal phase evolution for the barium strontium ferrite nanopowders and a formation of secondary phase: α-Fe2O3 is evident for the Ba0.5Sr0.5Fe12O19. Raman spectroscopy confirmed the presence of different sublattices of Fe3+ present in the hexaferrite structure. Fourier transform infrared spectroscopy demonstrated the usual stretching vibrations of tetrahedral and octahedral M–O bands. The morphology and chemical composition of the samples were analyzed by transmission electron microscopy and field emission scanning electron microscopy attached with energy dispersive X-ray analysis, respectively. Selected area electron diffraction studies showed the nanocrystalline nature of the samples. The magnetic parameters such as saturation magnetization MS, coercivity, HC and remanent magnetization, MR were estimated from the hysteresis loops. Maximum value of MS (70.5 emu/g) was obtained for the Ba0.5Sr0.5Fe11.5Co0.5O19 nanoparticles. A possible growth mechanism on the crystallization of Ba0.5Sr0.5Fe12O19 hexagonal platelets during the citrate gel combustion synthesis is highlighted. © 2016 Elsevier B.V.
About the journal
JournalData powered by TypesetJournal of Crystal Growth
PublisherData powered by TypesetElsevier BV
ISSN0022-0248
Open Access0