Header menu link for other important links
X
MHD micropolar fluid flow over a stretching permeable sheet in the presence of thermal radiation and thermal slip flow: a numerical study
Gangadhar K, Lakshmi Narayana K, Sathies Kumar P,
Published in IOP Publishing
2017
Volume: 263
   
Issue: 6
Abstract
In this manuscript, a mathematical explanation is an attempt at meant for two-dimensional, micropolar fluid flow over a permeable stretching sheet with viscous dissipation in the occurrence of thermal radiation and temperature dependent slip flow. With the similarity transformations, the governing equations have been changed into a scheme of ordinary differential equations. These differential equations are extremely nonlinear which cannot be solved analytically. Thus, bvp4c MATLAB solvers have been used for solving it. Numerical consequences are obtained for the skin-friction coefficient, the couple wall stress and the local Nusselt number with the same as velocity, microrotation and temperature profiles for various values of the governing parameters, namely, material factor, magnetic factor, thermal slip factor, radiation factor, Prandtl number and Eckert number. It is found that magnetic field reduces the fluid velocity and angular velocity, but magnetic field enhances the fluid temperature. Furthermore, fluid temperature increases with increases in thermal slip parameter. © 2017 Published under licence by IOP Publishing Ltd.
About the journal
JournalData powered by TypesetIOP Conference Series: Materials Science and Engineering
PublisherData powered by TypesetIOP Publishing
ISSN1757-8981
Open AccessYes