Header menu link for other important links
X
Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries
Abdosllam M.A, Gunasundari E, , , Nakkeeran K,
Published in SPIE
2014
Volume: 9233
   
Abstract

We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≈ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

About the journal
JournalData powered by TypesetInternational Symposium on Photonics and Optoelectronics 2014
PublisherData powered by TypesetSPIE
ISSN0277786X
Open AccessNo